Cargando…
A Duchenne Muscular Dystrophy Gene Hot Spot Mutation in Dystrophin-Deficient Cavalier King Charles Spaniels Is Amenable to Exon 51 Skipping
BACKGROUND: Duchenne muscular dystrophy (DMD), which afflicts 1 in 3500 boys, is one of the most common genetic disorders of children. This fatal degenerative condition is caused by an absence or deficiency of dystrophin in striated muscle. Most affected patients have inherited or spontaneous deleti...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800183/ https://www.ncbi.nlm.nih.gov/pubmed/20072625 http://dx.doi.org/10.1371/journal.pone.0008647 |
_version_ | 1782175845783175168 |
---|---|
author | Walmsley, Gemma L. Arechavala-Gomeza, Virginia Fernandez-Fuente, Marta Burke, Margaret M. Nagel, Nicole Holder, Angela Stanley, Rachael Chandler, Kate Marks, Stanley L. Muntoni, Francesco Shelton, G. Diane Piercy, Richard J. |
author_facet | Walmsley, Gemma L. Arechavala-Gomeza, Virginia Fernandez-Fuente, Marta Burke, Margaret M. Nagel, Nicole Holder, Angela Stanley, Rachael Chandler, Kate Marks, Stanley L. Muntoni, Francesco Shelton, G. Diane Piercy, Richard J. |
author_sort | Walmsley, Gemma L. |
collection | PubMed |
description | BACKGROUND: Duchenne muscular dystrophy (DMD), which afflicts 1 in 3500 boys, is one of the most common genetic disorders of children. This fatal degenerative condition is caused by an absence or deficiency of dystrophin in striated muscle. Most affected patients have inherited or spontaneous deletions in the dystrophin gene that disrupt the reading frame resulting in unstable truncated products. For these patients, restoration of the reading frame via antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach. The major DMD deletion “hot spot” is found between exons 45 and 53, and skipping exon 51 in particular is predicted to ameliorate the dystrophic phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used animal model of DMD, although its mild phenotype limits its suitability in clinical trials. The Golden Retriever muscular dystrophy (GRMD) model has a severe phenotype, but due to its large size, is expensive to use. Both these models have mutations in regions of the dystrophin gene distant from the commonly mutated DMD “hot spot”. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the severe phenotype, histopathological findings, and molecular analysis of Cavalier King Charles Spaniels with dystrophin-deficient muscular dystrophy (CKCS-MD). The dogs harbour a missense mutation in the 5′ donor splice site of exon 50 that results in deletion of exon 50 in mRNA transcripts and a predicted premature truncation of the translated protein. Antisense oligonucleotide-mediated skipping of exon 51 in cultured myoblasts from an affected dog restored the reading frame and protein expression. CONCLUSIONS/SIGNIFICANCE: Given the small size of the breed, the amiable temperament and the nature of the mutation, we propose that CKCS-MD is a valuable new model for clinical trials of antisense oligonucleotide-induced exon skipping and other therapeutic approaches for DMD. |
format | Text |
id | pubmed-2800183 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-28001832010-01-14 A Duchenne Muscular Dystrophy Gene Hot Spot Mutation in Dystrophin-Deficient Cavalier King Charles Spaniels Is Amenable to Exon 51 Skipping Walmsley, Gemma L. Arechavala-Gomeza, Virginia Fernandez-Fuente, Marta Burke, Margaret M. Nagel, Nicole Holder, Angela Stanley, Rachael Chandler, Kate Marks, Stanley L. Muntoni, Francesco Shelton, G. Diane Piercy, Richard J. PLoS One Research Article BACKGROUND: Duchenne muscular dystrophy (DMD), which afflicts 1 in 3500 boys, is one of the most common genetic disorders of children. This fatal degenerative condition is caused by an absence or deficiency of dystrophin in striated muscle. Most affected patients have inherited or spontaneous deletions in the dystrophin gene that disrupt the reading frame resulting in unstable truncated products. For these patients, restoration of the reading frame via antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach. The major DMD deletion “hot spot” is found between exons 45 and 53, and skipping exon 51 in particular is predicted to ameliorate the dystrophic phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used animal model of DMD, although its mild phenotype limits its suitability in clinical trials. The Golden Retriever muscular dystrophy (GRMD) model has a severe phenotype, but due to its large size, is expensive to use. Both these models have mutations in regions of the dystrophin gene distant from the commonly mutated DMD “hot spot”. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the severe phenotype, histopathological findings, and molecular analysis of Cavalier King Charles Spaniels with dystrophin-deficient muscular dystrophy (CKCS-MD). The dogs harbour a missense mutation in the 5′ donor splice site of exon 50 that results in deletion of exon 50 in mRNA transcripts and a predicted premature truncation of the translated protein. Antisense oligonucleotide-mediated skipping of exon 51 in cultured myoblasts from an affected dog restored the reading frame and protein expression. CONCLUSIONS/SIGNIFICANCE: Given the small size of the breed, the amiable temperament and the nature of the mutation, we propose that CKCS-MD is a valuable new model for clinical trials of antisense oligonucleotide-induced exon skipping and other therapeutic approaches for DMD. Public Library of Science 2010-01-13 /pmc/articles/PMC2800183/ /pubmed/20072625 http://dx.doi.org/10.1371/journal.pone.0008647 Text en Walmsley et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Walmsley, Gemma L. Arechavala-Gomeza, Virginia Fernandez-Fuente, Marta Burke, Margaret M. Nagel, Nicole Holder, Angela Stanley, Rachael Chandler, Kate Marks, Stanley L. Muntoni, Francesco Shelton, G. Diane Piercy, Richard J. A Duchenne Muscular Dystrophy Gene Hot Spot Mutation in Dystrophin-Deficient Cavalier King Charles Spaniels Is Amenable to Exon 51 Skipping |
title | A Duchenne Muscular Dystrophy Gene Hot Spot Mutation in Dystrophin-Deficient Cavalier King Charles Spaniels Is Amenable to Exon 51 Skipping |
title_full | A Duchenne Muscular Dystrophy Gene Hot Spot Mutation in Dystrophin-Deficient Cavalier King Charles Spaniels Is Amenable to Exon 51 Skipping |
title_fullStr | A Duchenne Muscular Dystrophy Gene Hot Spot Mutation in Dystrophin-Deficient Cavalier King Charles Spaniels Is Amenable to Exon 51 Skipping |
title_full_unstemmed | A Duchenne Muscular Dystrophy Gene Hot Spot Mutation in Dystrophin-Deficient Cavalier King Charles Spaniels Is Amenable to Exon 51 Skipping |
title_short | A Duchenne Muscular Dystrophy Gene Hot Spot Mutation in Dystrophin-Deficient Cavalier King Charles Spaniels Is Amenable to Exon 51 Skipping |
title_sort | duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800183/ https://www.ncbi.nlm.nih.gov/pubmed/20072625 http://dx.doi.org/10.1371/journal.pone.0008647 |
work_keys_str_mv | AT walmsleygemmal aduchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT arechavalagomezavirginia aduchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT fernandezfuentemarta aduchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT burkemargaretm aduchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT nagelnicole aduchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT holderangela aduchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT stanleyrachael aduchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT chandlerkate aduchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT marksstanleyl aduchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT muntonifrancesco aduchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT sheltongdiane aduchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT piercyrichardj aduchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT walmsleygemmal duchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT arechavalagomezavirginia duchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT fernandezfuentemarta duchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT burkemargaretm duchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT nagelnicole duchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT holderangela duchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT stanleyrachael duchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT chandlerkate duchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT marksstanleyl duchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT muntonifrancesco duchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT sheltongdiane duchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping AT piercyrichardj duchennemusculardystrophygenehotspotmutationindystrophindeficientcavalierkingcharlesspanielsisamenabletoexon51skipping |