Cargando…

Nitrite protects against morbidity and mortality associated with TNF- or LPS-induced shock in a soluble guanylate cyclase–dependent manner

Nitrite (NO(2)(−)), previously viewed as a physiologically inert metabolite and biomarker of the endogenous vasodilator NO, was recently identified as an important biological NO reservoir in vasculature and tissues, where it contributes to hypoxic signaling, vasodilation, and cytoprotection after is...

Descripción completa

Detalles Bibliográficos
Autores principales: Cauwels, Anje, Buys, Emmanuel S., Thoonen, Robrecht, Geary, Lisa, Delanghe, Joris, Shiva, Sruti, Brouckaert, Peter
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806477/
https://www.ncbi.nlm.nih.gov/pubmed/19934018
http://dx.doi.org/10.1084/jem.20091236
Descripción
Sumario:Nitrite (NO(2)(−)), previously viewed as a physiologically inert metabolite and biomarker of the endogenous vasodilator NO, was recently identified as an important biological NO reservoir in vasculature and tissues, where it contributes to hypoxic signaling, vasodilation, and cytoprotection after ischemia–reperfusion injury. Reduction of nitrite to NO may occur enzymatically at low pH and oxygen tension by deoxyhemoglobin, deoxymyoglobin, xanthine oxidase, mitochondrial complexes, or NO synthase (NOS). We show that nitrite treatment, in sharp contrast with the worsening effect of NOS inhibition, significantly attenuates hypothermia, mitochondrial damage, oxidative stress and dysfunction, tissue infarction, and mortality in a mouse shock model induced by a lethal tumor necrosis factor challenge. Mechanistically, nitrite-dependent protection was not associated with inhibition of mitochondrial complex I activity, as previously demonstrated for ischemia–reperfusion, but was largely abolished in mice deficient for the soluble guanylate cyclase (sGC) α1 subunit, one of the principal intracellular NO receptors and signal transducers in the cardiovasculature. Nitrite could also provide protection against toxicity induced by Gram-negative lipopolysaccharide, although higher doses were required. In conclusion, we show that nitrite can protect against toxicity in shock via sGC-dependent signaling, which may include hypoxic vasodilation necessary to maintain microcirculation and organ function, and cardioprotection.