Cargando…

Identification of mammalian orthologs using local synteny

BACKGROUND: Accurate determination of orthology is central to comparative genomics. For vertebrates in particular, very large gene families, high rates of gene duplication and loss, multiple mechanisms of gene duplication, and high rates of retrotransposition all combine to make inference of ortholo...

Descripción completa

Detalles Bibliográficos
Autores principales: Jun, Jin, Mandoiu, Ion I, Nelson, Craig E
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807883/
https://www.ncbi.nlm.nih.gov/pubmed/20030836
http://dx.doi.org/10.1186/1471-2164-10-630
_version_ 1782176439421894656
author Jun, Jin
Mandoiu, Ion I
Nelson, Craig E
author_facet Jun, Jin
Mandoiu, Ion I
Nelson, Craig E
author_sort Jun, Jin
collection PubMed
description BACKGROUND: Accurate determination of orthology is central to comparative genomics. For vertebrates in particular, very large gene families, high rates of gene duplication and loss, multiple mechanisms of gene duplication, and high rates of retrotransposition all combine to make inference of orthology between genes difficult. Many methods have been developed to identify orthologous genes, mostly based upon analysis of the inferred protein sequence of the genes. More recently, methods have been proposed that use genomic context in addition to protein sequence to improve orthology assignment in vertebrates. Such methods have been most successfully implemented in fungal genomes and have long been used in prokaryotic genomes, where gene order is far less variable than in vertebrates. However, to our knowledge, no explicit comparison of synteny and sequence based definitions of orthology has been reported in vertebrates, or, more specifically, in mammals. RESULTS: We test a simple method for the measurement and utilization of gene order (local synteny) in the identification of mammalian orthologs by investigating the agreement between coding sequence based orthology (Inparanoid) and local synteny based orthology. In the 5 mammalian genomes studied, 93% of the sampled inter-species pairs were found to be concordant between the two orthology methods, illustrating that local synteny is a robust substitute to coding sequence for identifying orthologs. However, 7% of pairs were found to be discordant between local synteny and Inparanoid. These cases of discordance result from evolutionary events including retrotransposition and genome rearrangements. CONCLUSIONS: By analyzing cases of discordance between local synteny and Inparanoid we show that local synteny can distinguish between true orthologs and recent retrogenes, can resolve ambiguous many-to-many orthology relationships into one-to-one ortholog pairs, and might be used to identify cases of non-orthologous gene displacement by retroduplicated paralogs.
format Text
id pubmed-2807883
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-28078832010-01-19 Identification of mammalian orthologs using local synteny Jun, Jin Mandoiu, Ion I Nelson, Craig E BMC Genomics Research article BACKGROUND: Accurate determination of orthology is central to comparative genomics. For vertebrates in particular, very large gene families, high rates of gene duplication and loss, multiple mechanisms of gene duplication, and high rates of retrotransposition all combine to make inference of orthology between genes difficult. Many methods have been developed to identify orthologous genes, mostly based upon analysis of the inferred protein sequence of the genes. More recently, methods have been proposed that use genomic context in addition to protein sequence to improve orthology assignment in vertebrates. Such methods have been most successfully implemented in fungal genomes and have long been used in prokaryotic genomes, where gene order is far less variable than in vertebrates. However, to our knowledge, no explicit comparison of synteny and sequence based definitions of orthology has been reported in vertebrates, or, more specifically, in mammals. RESULTS: We test a simple method for the measurement and utilization of gene order (local synteny) in the identification of mammalian orthologs by investigating the agreement between coding sequence based orthology (Inparanoid) and local synteny based orthology. In the 5 mammalian genomes studied, 93% of the sampled inter-species pairs were found to be concordant between the two orthology methods, illustrating that local synteny is a robust substitute to coding sequence for identifying orthologs. However, 7% of pairs were found to be discordant between local synteny and Inparanoid. These cases of discordance result from evolutionary events including retrotransposition and genome rearrangements. CONCLUSIONS: By analyzing cases of discordance between local synteny and Inparanoid we show that local synteny can distinguish between true orthologs and recent retrogenes, can resolve ambiguous many-to-many orthology relationships into one-to-one ortholog pairs, and might be used to identify cases of non-orthologous gene displacement by retroduplicated paralogs. BioMed Central 2009-12-23 /pmc/articles/PMC2807883/ /pubmed/20030836 http://dx.doi.org/10.1186/1471-2164-10-630 Text en Copyright ©2009 Jun et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research article
Jun, Jin
Mandoiu, Ion I
Nelson, Craig E
Identification of mammalian orthologs using local synteny
title Identification of mammalian orthologs using local synteny
title_full Identification of mammalian orthologs using local synteny
title_fullStr Identification of mammalian orthologs using local synteny
title_full_unstemmed Identification of mammalian orthologs using local synteny
title_short Identification of mammalian orthologs using local synteny
title_sort identification of mammalian orthologs using local synteny
topic Research article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807883/
https://www.ncbi.nlm.nih.gov/pubmed/20030836
http://dx.doi.org/10.1186/1471-2164-10-630
work_keys_str_mv AT junjin identificationofmammalianorthologsusinglocalsynteny
AT mandoiuioni identificationofmammalianorthologsusinglocalsynteny
AT nelsoncraige identificationofmammalianorthologsusinglocalsynteny