Cargando…

Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene

BACKGROUND: There is a need to develop robust and clinically applicable gene expression signatures. Hypoxia is a key factor promoting solid tumour progression and resistance to therapy; a hypoxia signature has the potential to be not only prognostic but also to predict benefit from particular interv...

Descripción completa

Detalles Bibliográficos
Autores principales: Buffa, F M, Harris, A L, West, C M, Miller, C J
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816644/
https://www.ncbi.nlm.nih.gov/pubmed/20087356
http://dx.doi.org/10.1038/sj.bjc.6605450
Descripción
Sumario:BACKGROUND: There is a need to develop robust and clinically applicable gene expression signatures. Hypoxia is a key factor promoting solid tumour progression and resistance to therapy; a hypoxia signature has the potential to be not only prognostic but also to predict benefit from particular interventions. METHODS: An approach for deriving signatures that combine knowledge of gene function and analysis of in vivo co-expression patterns was used to define a common hypoxia signature from three head and neck and five breast cancer studies. Previously validated hypoxia-regulated genes (seeds) were used to generate hypoxia co-expression cancer networks. RESULTS: A common hypoxia signature, or metagene, was derived by selecting genes that were consistently co-expressed with the hypoxia seeds in multiple cancers. This was highly enriched for hypoxia-regulated pathways, and prognostic in multivariate analyses. Genes with the highest connectivity were also the most prognostic, and a reduced metagene consisting of a small number of top-ranked genes, including VEGFA, SLC2A1 and PGAM1, outperformed both a larger signature and reported signatures in independent data sets of head and neck, breast and lung cancers. CONCLUSION: Combined knowledge of multiple genes' function from in vitro experiments together with meta-analysis of multiple cancers can deliver compact and robust signatures suitable for clinical application.