Cargando…

A low α-linolenic intake during early life increases adiposity in the adult guinea pig

BACKGROUND: The composition of dietary fatty acids (FA) during early life may impact adult adipose tissue (AT) development. We investigated the effects of α-linolenic acid (ALA) intake during the suckling/weaning period on AT development and metabolic markers in the guinea pig (GP). METHODS: Newborn...

Descripción completa

Detalles Bibliográficos
Autores principales: Pouteau, Etienne, Aprikian, Olivier, Grenot, Catherine, Reynaud, Denis, Pace-Asciak, Cecil, Cuilleron, Claude Yves, Castañeda-Gutiérrez, Eurídice, Moulin, Julie, Pescia, Gregory, Beysen, Carine, Turner, Scott, Macé, Katherine
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825514/
https://www.ncbi.nlm.nih.gov/pubmed/20205840
http://dx.doi.org/10.1186/1743-7075-7-8
Descripción
Sumario:BACKGROUND: The composition of dietary fatty acids (FA) during early life may impact adult adipose tissue (AT) development. We investigated the effects of α-linolenic acid (ALA) intake during the suckling/weaning period on AT development and metabolic markers in the guinea pig (GP). METHODS: Newborn GP were fed a 27%-fat diet (w/w %) with high (10%-ALA group), moderate (2.4%-ALA group) or low (0.8%-ALA group) ALA content (w/w % as total FA) until they were 21 days old (d21). Then all animals were switched to a 15%-fat diet containing 2% ALA (as total FA) until 136 days of age (d136). RESULTS: ALA and docosapentaenoic acid measured in plasma triglycerides (TG) at d21 decreased with decreasing ALA intake. Total body fat mass was not different between groups at d21. Adipose tissue TG synthesis rates and proliferation rate of total adipose cells, as assessed by (2)H(2)O labelling, were unchanged between groups at d21, while hepatic de novo lipogenesis was significantly 2-fold increased in the 0.8%-ALA group. In older GP, the 0.8%-ALA group showed a significant 15-%-increased total fat mass (d79 and d107, p < 0.01) and epididymal AT weight (d136) and tended to show higher insulinemia compared to the 10%-ALA group. In addition, proliferation rate of cells in the subcutaneous AT was higher in the 0.8%-ALA (15.2 ± 1.3% new cells/5d) than in the 10%-ALA group (8.6 ± 1.7% new cells/5d, p = 0.021) at d136. AT eicosanoid profiles were not associated with the increase of AT cell proliferation. CONCLUSION: A low ALA intake during early postnatal life promotes an increased adiposity in the adult GP.