Cargando…
The proteolytic system of lactic acid bacteria revisited: a genomic comparison
BACKGROUND: Lactic acid bacteria (LAB) are a group of gram-positive, lactic acid producing Firmicutes. They have been extensively used in food fermentations, including the production of various dairy products. The proteolytic system of LAB converts proteins to peptides and then to amino acids, which...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827410/ https://www.ncbi.nlm.nih.gov/pubmed/20078865 http://dx.doi.org/10.1186/1471-2164-11-36 |
_version_ | 1782177937284399104 |
---|---|
author | Liu, Mengjin Bayjanov, Jumamurat R Renckens, Bernadet Nauta, Arjen Siezen, Roland J |
author_facet | Liu, Mengjin Bayjanov, Jumamurat R Renckens, Bernadet Nauta, Arjen Siezen, Roland J |
author_sort | Liu, Mengjin |
collection | PubMed |
description | BACKGROUND: Lactic acid bacteria (LAB) are a group of gram-positive, lactic acid producing Firmicutes. They have been extensively used in food fermentations, including the production of various dairy products. The proteolytic system of LAB converts proteins to peptides and then to amino acids, which is essential for bacterial growth and also contributes significantly to flavor compounds as end-products. Recent developments in high-throughput genome sequencing and comparative genomics hybridization arrays provide us with opportunities to explore the diversity of the proteolytic system in various LAB strains. RESULTS: We performed a genome-wide comparative genomics analysis of proteolytic system components, including cell-wall bound proteinase, peptide transporters and peptidases, in 22 sequenced LAB strains. The peptidase families PepP/PepQ/PepM, PepD and PepI/PepR/PepL are described as examples of our in silico approach to refine the distinction of subfamilies with different enzymatic activities. Comparison of protein 3D structures of proline peptidases PepI/PepR/PepL and esterase A allowed identification of a conserved core structure, which was then used to improve phylogenetic analysis and functional annotation within this protein superfamily. The diversity of proteolytic system components in 39 Lactococcus lactis strains was explored using pangenome comparative genome hybridization analysis. Variations were observed in the proteinase PrtP and its maturation protein PrtM, in one of the Opp transport systems and in several peptidases between strains from different Lactococcus subspecies or from different origin. CONCLUSIONS: The improved functional annotation of the proteolytic system components provides an excellent framework for future experimental validations of predicted enzymatic activities. The genome sequence data can be coupled to other "omics" data e.g. transcriptomics and metabolomics for prediction of proteolytic and flavor-forming potential of LAB strains. Such an integrated approach can be used to tune the strain selection process in food fermentations. |
format | Text |
id | pubmed-2827410 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28274102010-02-24 The proteolytic system of lactic acid bacteria revisited: a genomic comparison Liu, Mengjin Bayjanov, Jumamurat R Renckens, Bernadet Nauta, Arjen Siezen, Roland J BMC Genomics Research Article BACKGROUND: Lactic acid bacteria (LAB) are a group of gram-positive, lactic acid producing Firmicutes. They have been extensively used in food fermentations, including the production of various dairy products. The proteolytic system of LAB converts proteins to peptides and then to amino acids, which is essential for bacterial growth and also contributes significantly to flavor compounds as end-products. Recent developments in high-throughput genome sequencing and comparative genomics hybridization arrays provide us with opportunities to explore the diversity of the proteolytic system in various LAB strains. RESULTS: We performed a genome-wide comparative genomics analysis of proteolytic system components, including cell-wall bound proteinase, peptide transporters and peptidases, in 22 sequenced LAB strains. The peptidase families PepP/PepQ/PepM, PepD and PepI/PepR/PepL are described as examples of our in silico approach to refine the distinction of subfamilies with different enzymatic activities. Comparison of protein 3D structures of proline peptidases PepI/PepR/PepL and esterase A allowed identification of a conserved core structure, which was then used to improve phylogenetic analysis and functional annotation within this protein superfamily. The diversity of proteolytic system components in 39 Lactococcus lactis strains was explored using pangenome comparative genome hybridization analysis. Variations were observed in the proteinase PrtP and its maturation protein PrtM, in one of the Opp transport systems and in several peptidases between strains from different Lactococcus subspecies or from different origin. CONCLUSIONS: The improved functional annotation of the proteolytic system components provides an excellent framework for future experimental validations of predicted enzymatic activities. The genome sequence data can be coupled to other "omics" data e.g. transcriptomics and metabolomics for prediction of proteolytic and flavor-forming potential of LAB strains. Such an integrated approach can be used to tune the strain selection process in food fermentations. BioMed Central 2010-01-15 /pmc/articles/PMC2827410/ /pubmed/20078865 http://dx.doi.org/10.1186/1471-2164-11-36 Text en Copyright ©2010 Liu et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Liu, Mengjin Bayjanov, Jumamurat R Renckens, Bernadet Nauta, Arjen Siezen, Roland J The proteolytic system of lactic acid bacteria revisited: a genomic comparison |
title | The proteolytic system of lactic acid bacteria revisited: a genomic comparison |
title_full | The proteolytic system of lactic acid bacteria revisited: a genomic comparison |
title_fullStr | The proteolytic system of lactic acid bacteria revisited: a genomic comparison |
title_full_unstemmed | The proteolytic system of lactic acid bacteria revisited: a genomic comparison |
title_short | The proteolytic system of lactic acid bacteria revisited: a genomic comparison |
title_sort | proteolytic system of lactic acid bacteria revisited: a genomic comparison |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827410/ https://www.ncbi.nlm.nih.gov/pubmed/20078865 http://dx.doi.org/10.1186/1471-2164-11-36 |
work_keys_str_mv | AT liumengjin theproteolyticsystemoflacticacidbacteriarevisitedagenomiccomparison AT bayjanovjumamuratr theproteolyticsystemoflacticacidbacteriarevisitedagenomiccomparison AT renckensbernadet theproteolyticsystemoflacticacidbacteriarevisitedagenomiccomparison AT nautaarjen theproteolyticsystemoflacticacidbacteriarevisitedagenomiccomparison AT siezenrolandj theproteolyticsystemoflacticacidbacteriarevisitedagenomiccomparison AT liumengjin proteolyticsystemoflacticacidbacteriarevisitedagenomiccomparison AT bayjanovjumamuratr proteolyticsystemoflacticacidbacteriarevisitedagenomiccomparison AT renckensbernadet proteolyticsystemoflacticacidbacteriarevisitedagenomiccomparison AT nautaarjen proteolyticsystemoflacticacidbacteriarevisitedagenomiccomparison AT siezenrolandj proteolyticsystemoflacticacidbacteriarevisitedagenomiccomparison |