Cargando…

DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery

Many genes are recruited to the nuclear periphery upon transcriptional activation in Saccharomyces cerevisiae. We have identified two Gene Recruitment Sequences (GRS I and II) from the promoter of the INO1 gene that target the gene to the nuclear periphery. These GRSs function as DNA zip codes; they...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmed, Sara, Brickner, Donna G., Light, William H., Cajigas, Ivelisse, McDonough, Michele, Froyshteter, Alexander B., Volpe, Tom, Brickner, Jason H.
Formato: Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835469/
https://www.ncbi.nlm.nih.gov/pubmed/20098417
http://dx.doi.org/10.1038/ncb2011
Descripción
Sumario:Many genes are recruited to the nuclear periphery upon transcriptional activation in Saccharomyces cerevisiae. We have identified two Gene Recruitment Sequences (GRS I and II) from the promoter of the INO1 gene that target the gene to the nuclear periphery. These GRSs function as DNA zip codes; they are sufficient to target a nucleoplasmic locus to the nuclear periphery. Targeting requires components of the nuclear pore complex (NPC) and a GRS is sufficient to confer a physical interaction with the NPC. GRS I elements are enriched in promoters of genes that interact with the NPC and genes that are induced by protein folding stress. Full transcriptional activation of INO1 and another GRS-containing gene requires GRS-mediated targeting of the promoter to the nuclear periphery. Finally, GRS I also functions as a DNA zip code in Schizosaccharomyces pombe, suggesting that this mechanism of targeting to the nuclear periphery has been conserved over approximately one billion years of evolution.