Cargando…

Neuronal apoptosis by prolyl hydroxylation: implication in nervous system tumours and the Warburg conundrum

Oxygen-sensing mechanisms are often dysfunctional in tumours. Oxygen sensing is mediated partly via prolyl hydroxylation. The EglN prolyl hydroxylases are well characterized in regulating the hypoxia inducible factor α (HIF-α) hypoxic response, but also are implicated in HIF-independent processes. E...

Descripción completa

Detalles Bibliográficos
Autor principal: Schlisio, Susanne
Formato: Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847199/
https://www.ncbi.nlm.nih.gov/pubmed/19691672
http://dx.doi.org/10.1111/j.1582-4934.2009.00881.x
_version_ 1782179546533986304
author Schlisio, Susanne
author_facet Schlisio, Susanne
author_sort Schlisio, Susanne
collection PubMed
description Oxygen-sensing mechanisms are often dysfunctional in tumours. Oxygen sensing is mediated partly via prolyl hydroxylation. The EglN prolyl hydroxylases are well characterized in regulating the hypoxia inducible factor α (HIF-α) hypoxic response, but also are implicated in HIF-independent processes. EglN3 executes apoptosis in neural precursors during development and failure of EglN3 developmental apoptosis can lead to certain forms of sympathetic nervous system tumours. Mutations in metabolic/mitochondrial enzymes (SDH, FH, IDH) impair EglN activity and predisposes to certain cancers. This is because the EglNs not only require molecular oxygen to execute hydroxylation, but also equally require the electron donor α-ketoglutarate, a metabolite from the Krebs cycle. Therefore EglN enzymes are considered oxygen, and also, metabolic sensors. α-Ketoglutarate is crucial for EglN hydroxylation activity, whereas the metabolites succinate and fumarate are inhibitors of the EglN enzymes. Since EglN activity is dependent upon metabolites that take part in the Krebs cycle, these enzymes are directly tied into the cellular metabolic network. Cancer cells tend to convert most glucose to lactate regardless of whether oxygen is present (aerobic glycolysis), an observation that was first made by Otto Warburg in 1924. Despite the striking difference in ATP production, cancer cells might favour aerobic glycolysis to escape from EglN hydroxylation, resulting in the accumulation of oncogenic HIFα and/or resistance to EglN3-mediated apoptosis.
format Text
id pubmed-2847199
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher John Wiley & Sons, Ltd
record_format MEDLINE/PubMed
spelling pubmed-28471992010-04-08 Neuronal apoptosis by prolyl hydroxylation: implication in nervous system tumours and the Warburg conundrum Schlisio, Susanne J Cell Mol Med Reviews Oxygen-sensing mechanisms are often dysfunctional in tumours. Oxygen sensing is mediated partly via prolyl hydroxylation. The EglN prolyl hydroxylases are well characterized in regulating the hypoxia inducible factor α (HIF-α) hypoxic response, but also are implicated in HIF-independent processes. EglN3 executes apoptosis in neural precursors during development and failure of EglN3 developmental apoptosis can lead to certain forms of sympathetic nervous system tumours. Mutations in metabolic/mitochondrial enzymes (SDH, FH, IDH) impair EglN activity and predisposes to certain cancers. This is because the EglNs not only require molecular oxygen to execute hydroxylation, but also equally require the electron donor α-ketoglutarate, a metabolite from the Krebs cycle. Therefore EglN enzymes are considered oxygen, and also, metabolic sensors. α-Ketoglutarate is crucial for EglN hydroxylation activity, whereas the metabolites succinate and fumarate are inhibitors of the EglN enzymes. Since EglN activity is dependent upon metabolites that take part in the Krebs cycle, these enzymes are directly tied into the cellular metabolic network. Cancer cells tend to convert most glucose to lactate regardless of whether oxygen is present (aerobic glycolysis), an observation that was first made by Otto Warburg in 1924. Despite the striking difference in ATP production, cancer cells might favour aerobic glycolysis to escape from EglN hydroxylation, resulting in the accumulation of oncogenic HIFα and/or resistance to EglN3-mediated apoptosis. John Wiley & Sons, Ltd 2009-10 2009-08-19 /pmc/articles/PMC2847199/ /pubmed/19691672 http://dx.doi.org/10.1111/j.1582-4934.2009.00881.x Text en © 2009 The Author Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
spellingShingle Reviews
Schlisio, Susanne
Neuronal apoptosis by prolyl hydroxylation: implication in nervous system tumours and the Warburg conundrum
title Neuronal apoptosis by prolyl hydroxylation: implication in nervous system tumours and the Warburg conundrum
title_full Neuronal apoptosis by prolyl hydroxylation: implication in nervous system tumours and the Warburg conundrum
title_fullStr Neuronal apoptosis by prolyl hydroxylation: implication in nervous system tumours and the Warburg conundrum
title_full_unstemmed Neuronal apoptosis by prolyl hydroxylation: implication in nervous system tumours and the Warburg conundrum
title_short Neuronal apoptosis by prolyl hydroxylation: implication in nervous system tumours and the Warburg conundrum
title_sort neuronal apoptosis by prolyl hydroxylation: implication in nervous system tumours and the warburg conundrum
topic Reviews
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847199/
https://www.ncbi.nlm.nih.gov/pubmed/19691672
http://dx.doi.org/10.1111/j.1582-4934.2009.00881.x
work_keys_str_mv AT schlisiosusanne neuronalapoptosisbyprolylhydroxylationimplicationinnervoussystemtumoursandthewarburgconundrum