Cargando…

Differential binding of Escherichia coli McrA protein to DNA sequences that contain the dinucleotide m5CpG

The Escherichia coli McrA protein, a putative C(5)-methylcytosine/C(5)-hydroxyl methylcytosine-specific nuclease, binds DNA with symmetrically methylated HpaII sequences (Cm5CGG), but its precise recognition sequence remains undefined. To determine McrA’s binding specificity, we cloned and expressed...

Descripción completa

Detalles Bibliográficos
Autores principales: Mulligan, Elizabeth A., Hatchwell, Eli, McCorkle, Sean R., Dunn, John J.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847215/
https://www.ncbi.nlm.nih.gov/pubmed/20015968
http://dx.doi.org/10.1093/nar/gkp1120
Descripción
Sumario:The Escherichia coli McrA protein, a putative C(5)-methylcytosine/C(5)-hydroxyl methylcytosine-specific nuclease, binds DNA with symmetrically methylated HpaII sequences (Cm5CGG), but its precise recognition sequence remains undefined. To determine McrA’s binding specificity, we cloned and expressed recombinant McrA with a C-terminal StrepII tag (rMcrA-S) to facilitate protein purification and affinity capture of human DNA fragments with m5C residues. Sequence analysis of a subset of these fragments and electrophoretic mobility shift assays with model methylated and unmethylated oligonucleotides suggest that N(Y > R) m5CGR is the canonical binding site for rMcrA-S. In addition to binding HpaII-methylated double-stranded DNA, rMcrA-S binds DNA containing a single, hemimethylated HpaII site; however, it does not bind if A, C, T or U is placed across from the m5C residue, but does if I is opposite the m5C. These results provide the first systematic analysis of McrA’s in vitro binding specificity.