Cargando…

Identifying single-cell molecular programs by stochastic profiling

Cells within tissues can be morphologically indistinguishable yet show molecular expression patterns that are remarkably heterogeneous. Here, we describe an approach for comprehensively identifying coregulated, heterogeneously expressed genes among cells that otherwise appear identical. The techniqu...

Descripción completa

Detalles Bibliográficos
Autores principales: Janes, Kevin A., Wang, Chun-Chao, Holmberg, Karin J., Cabral, Kristin, Brugge, Joan S.
Formato: Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849806/
https://www.ncbi.nlm.nih.gov/pubmed/20228812
http://dx.doi.org/10.1038/nmeth.1442
Descripción
Sumario:Cells within tissues can be morphologically indistinguishable yet show molecular expression patterns that are remarkably heterogeneous. Here, we describe an approach for comprehensively identifying coregulated, heterogeneously expressed genes among cells that otherwise appear identical. The technique, called “stochastic profiling”, involves the repeated, random selection of very-small cell populations via laser-capture microdissection, followed by a customized single-cell amplification procedure and transcriptional profiling. Fluctuations in the resulting gene-expression measurements are then analyzed statistically to identify transcripts that are heterogeneously co-expressed. We stochastically profiled matrix-attached human epithelial cells in a three-dimensional culture model of mammary-acinar morphogenesis. Of 4,557 transcripts, we identified 547 genes with strong cell-to-cell expression differences. Clustering of this heterogeneous subset revealed several molecular “programs” implicated in protein biosynthesis, oxidative-stress responses, and nuclear factor-κB signaling, which were independently confirmed by RNA fluorescence in situ hybridization. Thus, stochastic profiling can reveal single-cell heterogeneities without measuring individual cells explicitly.