Cargando…
Physicochemical property distributions for accurate and rapid pairwise protein homology detection
BACKGROUND: The challenge of remote homology detection is that many evolutionarily related sequences have very little similarity at the amino acid level. Kernel-based discriminative methods, such as support vector machines (SVMs), that use vector representations of sequences derived from sequence pr...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851606/ https://www.ncbi.nlm.nih.gov/pubmed/20302613 http://dx.doi.org/10.1186/1471-2105-11-145 |
_version_ | 1782179882300604416 |
---|---|
author | Webb-Robertson, Bobbie-Jo M Ratuiste, Kyle G Oehmen, Christopher S |
author_facet | Webb-Robertson, Bobbie-Jo M Ratuiste, Kyle G Oehmen, Christopher S |
author_sort | Webb-Robertson, Bobbie-Jo M |
collection | PubMed |
description | BACKGROUND: The challenge of remote homology detection is that many evolutionarily related sequences have very little similarity at the amino acid level. Kernel-based discriminative methods, such as support vector machines (SVMs), that use vector representations of sequences derived from sequence properties have been shown to have superior accuracy when compared to traditional approaches for the task of remote homology detection. RESULTS: We introduce a new method for feature vector representation based on the physicochemical properties of the primary protein sequence. A distribution of physicochemical property scores are assembled from 4-mers of the sequence and normalized based on the null distribution of the property over all possible 4-mers. With this approach there is little computational cost associated with the transformation of the protein into feature space, and overall performance in terms of remote homology detection is comparable with current state-of-the-art methods. We demonstrate that the features can be used for the task of pairwise remote homology detection with improved accuracy versus sequence-based methods such as BLAST and other feature-based methods of similar computational cost. CONCLUSIONS: A protein feature method based on physicochemical properties is a viable approach for extracting features in a computationally inexpensive manner while retaining the sensitivity of SVM protein homology detection. Furthermore, identifying features that can be used for generic pairwise homology detection in lieu of family-based homology detection is important for applications such as large database searches and comparative genomics. |
format | Text |
id | pubmed-2851606 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28516062010-04-09 Physicochemical property distributions for accurate and rapid pairwise protein homology detection Webb-Robertson, Bobbie-Jo M Ratuiste, Kyle G Oehmen, Christopher S BMC Bioinformatics Methodology article BACKGROUND: The challenge of remote homology detection is that many evolutionarily related sequences have very little similarity at the amino acid level. Kernel-based discriminative methods, such as support vector machines (SVMs), that use vector representations of sequences derived from sequence properties have been shown to have superior accuracy when compared to traditional approaches for the task of remote homology detection. RESULTS: We introduce a new method for feature vector representation based on the physicochemical properties of the primary protein sequence. A distribution of physicochemical property scores are assembled from 4-mers of the sequence and normalized based on the null distribution of the property over all possible 4-mers. With this approach there is little computational cost associated with the transformation of the protein into feature space, and overall performance in terms of remote homology detection is comparable with current state-of-the-art methods. We demonstrate that the features can be used for the task of pairwise remote homology detection with improved accuracy versus sequence-based methods such as BLAST and other feature-based methods of similar computational cost. CONCLUSIONS: A protein feature method based on physicochemical properties is a viable approach for extracting features in a computationally inexpensive manner while retaining the sensitivity of SVM protein homology detection. Furthermore, identifying features that can be used for generic pairwise homology detection in lieu of family-based homology detection is important for applications such as large database searches and comparative genomics. BioMed Central 2010-03-19 /pmc/articles/PMC2851606/ /pubmed/20302613 http://dx.doi.org/10.1186/1471-2105-11-145 Text en Copyright ©2010 Webb-Robertson et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology article Webb-Robertson, Bobbie-Jo M Ratuiste, Kyle G Oehmen, Christopher S Physicochemical property distributions for accurate and rapid pairwise protein homology detection |
title | Physicochemical property distributions for accurate and rapid pairwise protein homology detection |
title_full | Physicochemical property distributions for accurate and rapid pairwise protein homology detection |
title_fullStr | Physicochemical property distributions for accurate and rapid pairwise protein homology detection |
title_full_unstemmed | Physicochemical property distributions for accurate and rapid pairwise protein homology detection |
title_short | Physicochemical property distributions for accurate and rapid pairwise protein homology detection |
title_sort | physicochemical property distributions for accurate and rapid pairwise protein homology detection |
topic | Methodology article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851606/ https://www.ncbi.nlm.nih.gov/pubmed/20302613 http://dx.doi.org/10.1186/1471-2105-11-145 |
work_keys_str_mv | AT webbrobertsonbobbiejom physicochemicalpropertydistributionsforaccurateandrapidpairwiseproteinhomologydetection AT ratuistekyleg physicochemicalpropertydistributionsforaccurateandrapidpairwiseproteinhomologydetection AT oehmenchristophers physicochemicalpropertydistributionsforaccurateandrapidpairwiseproteinhomologydetection |