Cargando…

Artemisinin-Derived Dimers Have Greatly Improved Anti-Cytomegalovirus Activity Compared to Artemisinin Monomers

BACKGROUND: Artesunate, an artemisinin-derived monomer, was reported to inhibit Cytomegalovirus (CMV) replication. We aimed to compare the in-vitro anti-CMV activity of several artemisinin-derived monomers and newly synthesized artemisinin dimers. METHODS: Four artemisinin monomers and two novel art...

Descripción completa

Detalles Bibliográficos
Autores principales: Arav-Boger, Ravit, He, Ran, Chiou, Chuang-Jiun, Liu, Jianyong, Woodard, Lauren, Rosenthal, Andrew, Jones-Brando, Lorraine, Forman, Michael, Posner, Gary
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860993/
https://www.ncbi.nlm.nih.gov/pubmed/20442781
http://dx.doi.org/10.1371/journal.pone.0010370
Descripción
Sumario:BACKGROUND: Artesunate, an artemisinin-derived monomer, was reported to inhibit Cytomegalovirus (CMV) replication. We aimed to compare the in-vitro anti-CMV activity of several artemisinin-derived monomers and newly synthesized artemisinin dimers. METHODS: Four artemisinin monomers and two novel artemisinin-derived dimers were tested for anti-CMV activity in human fibroblasts infected with luciferase-tagged highly–passaged laboratory adapted strain (Towne), and a clinical CMV isolate. Compounds were evaluated for CMV inhibition and cytotoxicity. RESULTS: Artemisinin dimers effectively inhibited CMV replication in human foreskin fibroblasts and human embryonic lung fibroblasts (EC(50) for dimer sulfone carbamate and dimer primary alcohol 0.06±0.00 µM and 0.15±0.02 µM respectively, in human foreskin fibroblasts) with no cytotxicity at concentrations required for complete CMV inhibition. All four artemisinin monomers (artemisinin, artesunate, artemether and artefanilide) shared a similar degree of CMV inhibition amongst themselves (in µM concentrations) which was significantly less than the inhibition achieved with artemisinin dimers (P<0.0001). Similar to monomers, inhibition of CMV with artemisinin dimers appeared early in the virus life cycle as reflected by decreased expression of the immediate early (IE1) protein. CONCLUSIONS: Artemisinin dimers are potent and non-cytotoxic inhibitors of CMV replication. These compounds should be studied as potential therapeutic agents for the treatment of CMV infection in humans.