Cargando…

Active site remodeling accompanies thioester bond formation in the SUMO E1

E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for h...

Descripción completa

Detalles Bibliográficos
Autores principales: Olsen, Shaun K., Capili, Allan D., Lu, Xuequan, Tan, Derek S., Lima, Christopher D.
Formato: Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866016/
https://www.ncbi.nlm.nih.gov/pubmed/20164921
http://dx.doi.org/10.1038/nature08765
Descripción
Sumario:E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogs at 2.45 Å and 2.6 Å, respectively. These structures show that side chain contacts to ATP·Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodeling of key structural elements including the helix that contains the E1 catalytic cysteine, the cross-over and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses suggest these mechanisms are conserved in other E1s.