Cargando…

Formation of Covalently Bound Protein Adducts from the Cytotoxicant Naphthalene in Nasal Epithelium: Species Comparisons

BACKGROUND: Naphthalene is a volatile hydrocarbon that causes dose-, species-, and cell type–dependent cytotoxicity after acute exposure and hyperplasia/neoplasia after lifetime exposures in rodents. Toxicity depends on metabolic activation, and reactive metabolite binding correlates with tissue and...

Descripción completa

Detalles Bibliográficos
Autores principales: DeStefano-Shields, Christina, Morin, Dexter, Buckpitt, Alan
Formato: Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866680/
https://www.ncbi.nlm.nih.gov/pubmed/20435546
http://dx.doi.org/10.1289/ehp.0901333
Descripción
Sumario:BACKGROUND: Naphthalene is a volatile hydrocarbon that causes dose-, species-, and cell type–dependent cytotoxicity after acute exposure and hyperplasia/neoplasia after lifetime exposures in rodents. Toxicity depends on metabolic activation, and reactive metabolite binding correlates with tissue and site susceptibility. OBJECTIVES: We compared proteins adducted in nasal epithelium from rats and rhesus macaques in vitro. METHODS: Adducted proteins recovered from incubations of nasal epithelium and (14)C-naphthalene were separated by two-dimensional (2D) gel electrophoresis and imaged to register radioactive proteins. We identified proteins visualized by silver staining on complementary nonradioactive gels by peptide mass mapping. RESULTS: The levels of reactive metabolite binding in incubations of rhesus ethmoturbinates and maxilloturbinates are similar to those in incubations of target tissues, including rat septal/olfactory regions and murine dissected airway incubations. We identified 40 adducted spots from 2D gel separations of rat olfactory epithelial proteins; 22 of these were nonredundant. In monkeys, we identified 19 spots by mass spectrometry, yielding three nonredundant identifications. Structural proteins (actin/tubulin) were prominent targets in both species. CONCLUSIONS: In this study we identified potential target proteins that may serve as markers closely associated with toxicity. The large differences in previously reported rates of naphthalene metabolism to water-soluble metabolites in dissected airways from mice and monkeys are not reflected in similar differences in covalent adduct formation in the nose. This raises concerns that downstream metabolic/biochemical events are very similar between the rat, a known target for naphthalene toxicity and tumorigenicity, and the rhesus macaque, a species similar to the human.