Cargando…
Unsupervised Learning of Reflexive and Action-Based Affordances to Model Adaptive Navigational Behavior
Here we introduce a cognitive model capable to model a variety of behavioral domains and apply it to a navigational task. We used place cells as sensory representation, such that the cells’ place fields divided the environment into discrete states. The robot learns knowledge of the environment by me...
Autores principales: | Weiller, Daniel, Läer, Leonhard, Engel, Andreas K., König, Peter |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871689/ https://www.ncbi.nlm.nih.gov/pubmed/20485463 http://dx.doi.org/10.3389/fnbot.2010.00002 |
Ejemplares similares
-
Unsupervised Facial Action Representation Learning by Temporal Prediction
por: Wang, Chongwen, et al.
Publicado: (2022) -
Supervised and Unsupervised Learning Technology in the Study of Rodent Behavior
por: Gris, Katsiaryna V., et al.
Publicado: (2017) -
Unsupervised Adaptation of Brain-Machine Interface Decoders
por: Gürel, Tayfun, et al.
Publicado: (2012) -
Navigation in Real-World Environments: New Opportunities Afforded by Advances in Mobile Brain Imaging
por: Park, Joanne L., et al.
Publicado: (2018) -
Unsupervised Learning of Persistent and Sequential Activity
por: Pereira, Ulises, et al.
Publicado: (2020)