Cargando…
Tumor-associated macrophages in clear cell renal cell carcinoma express both gastrin-releasing peptide and its receptor: a possible modulatory role of immune effectors cells
PURPOSE: Renal cell carcinomas (RCC) frequently express the gastrin-releasing peptide receptor (GRP-R). Gastrin-releasing peptide (GRP) stimulates tumor cell proliferation and neoangiogenesis. Tumor-associated macrophages (TAM) comprise an important cellular component of these tumors. We analyzed th...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874056/ https://www.ncbi.nlm.nih.gov/pubmed/20012906 http://dx.doi.org/10.1007/s00345-009-0492-z |
Sumario: | PURPOSE: Renal cell carcinomas (RCC) frequently express the gastrin-releasing peptide receptor (GRP-R). Gastrin-releasing peptide (GRP) stimulates tumor cell proliferation and neoangiogenesis. Tumor-associated macrophages (TAM) comprise an important cellular component of these tumors. We analyzed the GRP/GRP-R network in clear cell RCC (ccRCC) and non-clear cell RCC (non-ccRCC) with special regard to its expression by macrophages, tumor cells and microvessels. METHODS: Gastrin-releasing peptide and GRP-R expression in 17 ccRCC and 9 non-ccRCC were analyzed by RT-PCR, immunohistochemistry and double immunofluorescence staining. RESULTS: Tumor-associated macrophages expressed GRP and GRP receptor in ccRCC. Tumor cells and microvessels showed low to intermediate GRP-R expression in nearly all cases. In 12 ccRCC tumor epithelia also expressed low levels of GRP. Microvascular GRP expression was found in nine cases of ccRCC. For non-RCC, the expression of GRP and GRP receptor expression pattern was similar. CONCLUSIONS: Tumor-associated macrophages are the main source of GRP in RCC. GRP receptor on TAM, tumor epithelia and microvessels might be a molecular base of a GRP/GRP receptor network, potentially acting as a paracrine/autocrine modulator of TAM recruitment, tumor growth and neoangiogenesis. |
---|