Cargando…
Ectopic Expression of E2F1 Stimulates β-Cell Proliferation and Function
OBJECTIVE: Generating functional β-cells by inducing their proliferation may provide new perspectives for cell therapy in diabetes. Transcription factor E2F1 controls G(1)- to S-phase transition during the cycling of many cell types and is required for pancreatic β-cell growth and function. However,...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874704/ https://www.ncbi.nlm.nih.gov/pubmed/20299467 http://dx.doi.org/10.2337/db09-1295 |
Sumario: | OBJECTIVE: Generating functional β-cells by inducing their proliferation may provide new perspectives for cell therapy in diabetes. Transcription factor E2F1 controls G(1)- to S-phase transition during the cycling of many cell types and is required for pancreatic β-cell growth and function. However, the consequences of overexpression of E2F1 in β-cells are unknown. RESEARCH DESIGN AND METHODS: The effects of E2F1 overexpression on β-cell proliferation and function were analyzed in isolated rat β-cells and in transgenic mice. RESULTS: Adenovirus AdE2F1-mediated overexpression of E2F1 increased the proliferation of isolated primary rat β-cells 20-fold but also enhanced β-cell death. Coinfection with adenovirus AdAkt expressing a constitutively active form of Akt (protein kinase B) suppressed β-cell death to control levels. At 48 h after infection, the total β-cell number and insulin content were, respectively, 46 and 79% higher in AdE2F1+AdAkt-infected cultures compared with untreated. Conditional overexpression of E2F1 in mice resulted in a twofold increase of β-cell proliferation and a 70% increase of pancreatic insulin content, but did not increase β-cell mass. Glucose-challenged insulin release was increased, and the mice showed protection against toxin-induced diabetes. CONCLUSIONS: Overexpression of E2F1, either in vitro or in vivo, can stimulate β-cell proliferation activity. In vivo E2F1 expression significantly increases the insulin content and function of adult β-cells, making it a strategic target for therapeutic manipulation of β-cell function. |
---|