Cargando…

beta-Catenin Regulates Intercellular Signalling Networks and Cell-Type Specific Transcription in the Developing Mouse Midbrain-Rhombomere 1 Region

β-catenin is a multifunctional protein involved in both signalling by secreted factors of Wnt family and regulation of the cellular architecture. We show that β-catenin stabilization in mouse midbrain-rhombomere1 region leads to robust up-regulation of several Wnt signalling target genes, including...

Descripción completa

Detalles Bibliográficos
Autores principales: Chilov, Dmitri, Sinjushina, Natalia, Saarimäki-Vire, Jonna, Taketo, Makoto M., Partanen, Juha
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880587/
https://www.ncbi.nlm.nih.gov/pubmed/20532162
http://dx.doi.org/10.1371/journal.pone.0010881
Descripción
Sumario:β-catenin is a multifunctional protein involved in both signalling by secreted factors of Wnt family and regulation of the cellular architecture. We show that β-catenin stabilization in mouse midbrain-rhombomere1 region leads to robust up-regulation of several Wnt signalling target genes, including Fgf8. Suggestive of direct transcriptional regulation of the Fgf8 gene, β-catenin stabilization resulted in Fgf8 up-regulation also in other tissues, specifically in the ventral limb ectoderm. Interestingly, stabilization of β-catenin rapidly caused down-regulation of the expression of Wnt1 itself, suggesting a negative feedback loop. The changes in signal molecule expression were concomitant with deregulation of anterior-posterior and dorso-ventral patterning. The transcriptional regulatory functions of β-catenin were confirmed by β-catenin loss-of-function experiments. Temporally controlled inactivation of β-catenin revealed a cell-autonomous role for β-catenin in the maintenance of cell-type specific gene expression in the progenitors of midbrain dopaminergic neurons. These results highlight the role of β-catenin in establishment of neuroectodermal signalling centers, promoting region-specific gene expression and regulation of cell fate determination.