Cargando…
Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment
Hematopoietic stem cells (HSCs) have been extensively characterized based on functional definitions determined by experimental transplantation into lethally irradiated mice. In mice, HSCs are heterogeneous with regard to self-renewal potential, in vitro colony-forming activity, and in vivo behavior....
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882827/ https://www.ncbi.nlm.nih.gov/pubmed/20421392 http://dx.doi.org/10.1084/jem.20091318 |
Sumario: | Hematopoietic stem cells (HSCs) have been extensively characterized based on functional definitions determined by experimental transplantation into lethally irradiated mice. In mice, HSCs are heterogeneous with regard to self-renewal potential, in vitro colony-forming activity, and in vivo behavior. We attempted prospective isolation of HSC subsets with distinct properties among CD34(−/low) c-Kit(+)Sca-1(+)Lin(−) (CD34(−)KSL) cells. CD34(−)KSL cells were divided, based on CD150 expression, into three fractions: CD150(high), CD150(med), and CD150(neg) cells. Compared with the other two fractions, CD150(high) cells were significantly enriched in HSCs, with great self-renewal potential. In vitro colony assays revealed that decreased expression of CD150 was associated with reduced erythroblast/megakaryocyte differentiation potential. All three fractions were regenerated only from CD150(high) cells in recipient mice. Using single-cell transplantation studies, we found that a fraction of CD150(high) cells displayed latent and barely detectable myeloid engraftment in primary-recipient mice but progressive and multilineage reconstitution in secondary-recipient mice. These findings highlight the complexity and hierarchy of reconstitution capability, even among HSCs in the most primitive compartment. |
---|