Cargando…
Casein Kinase 1 Functions as both Penultimate and Ultimate Kinase in Regulating Cdc25A Destruction
The Cdc25A protein phosphatase drives cell cycle transitions by activating cyclin-dependent protein kinases. Failure to regulate Cdc25A leads to deregulated cell cycle progression, bypass of cell cycle checkpoints and genome instability. Ubiquitin-mediated proteolysis plays an important role in bala...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883652/ https://www.ncbi.nlm.nih.gov/pubmed/20348946 http://dx.doi.org/10.1038/onc.2010.96 |
Sumario: | The Cdc25A protein phosphatase drives cell cycle transitions by activating cyclin-dependent protein kinases. Failure to regulate Cdc25A leads to deregulated cell cycle progression, bypass of cell cycle checkpoints and genome instability. Ubiquitin-mediated proteolysis plays an important role in balancing Cdc25A levels. Cdc25A contains a DS(82)G motif whose phosphorylation is targeted by β-TrCP E3 ligase during interphase. Targeting of β-TrCP to Cdc25A requires phosphorylation of serines 79 (S79) and 82 (S82). Here, we report that casein kinase 1 alpha (CK1α) phosphorylates Cdc25A on both S79 and S82 in a hierarchical manner requiring prior phosphorylation of serine 76 by Chk1 or GSK-3β. This facilitates β-TrCP binding and ubiquitin-mediated proteolysis of Cdc25A throughout interphase and following exposure to genotoxic stress. The priming of Cdc25A by at least three kinases (Chk1, GSK-3β, CK1α), some of which also require priming, ensures diverse extra- and intra-cellular signals interface with Cdc25A to precisely control cell division. |
---|