Cargando…

Precursor of Advanced Glycation End Products Mediates ER-Stress-Induced Caspase-3 Activation of Human Dermal Fibroblasts through NAD(P)H Oxidase 4

BACKGROUND: The precursor for advanced glycation end products, 3-deoxyglucosone (3DG) is highly upregulated in skin explants of diabetic cutaneous wounds, and has been shown to negatively impact dermal fibroblasts, which are crucial in wound remodeling. 3DG induces apoptosis however; the mechanisms...

Descripción completa

Detalles Bibliográficos
Autores principales: Loughlin, Danielle T., Artlett, Carol M.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885413/
https://www.ncbi.nlm.nih.gov/pubmed/20559423
http://dx.doi.org/10.1371/journal.pone.0011093
_version_ 1782182390484959232
author Loughlin, Danielle T.
Artlett, Carol M.
author_facet Loughlin, Danielle T.
Artlett, Carol M.
author_sort Loughlin, Danielle T.
collection PubMed
description BACKGROUND: The precursor for advanced glycation end products, 3-deoxyglucosone (3DG) is highly upregulated in skin explants of diabetic cutaneous wounds, and has been shown to negatively impact dermal fibroblasts, which are crucial in wound remodeling. 3DG induces apoptosis however; the mechanisms involved in the apoptotic action of 3DG in the pathogenesis of diabetic chronic wounds are poorly understood. Therefore, we sought to delineate novel mechanisms involved with the 3DG-collagen induced apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Using human dermal fibroblasts, we demonstrated that 3DG-modified collagen induces oxidative stress and caspase-3 activation. Oxidative stress was found to be dependent on the upregulation of NAD(P)H oxidase 4 (Nox4), a reactive oxygen species (ROS) Nox homologue, triggering endoplasmic reticulum (ER) stress, as assessed by the ER stress-induced apoptosis marker Growth Arrest and DNA Damage-inducible gene 153 (GADD153). We demonstrated that 3DG-collagen activated GADD153 via phosphorylation of p38 mitogen activated protein kinase (MAPK), and this was dependent on upstream ROS. Inhibition of ROS and/or p38 MAPK abrogated 3DG-collagen induced caspase-3 activation. Our investigations also demonstrated that 3DG-collagen-induced caspase-3 activation did not signal through the canonical receptor for advanced glycation end products (RAGE) but through integrin α1β1. To further verify the role of integrins, neutralization of integrins α1β1 prevented 3DG-collagen-induced upregulation of ROS, GADD153, and caspase-3 activation; suggesting that 3DG-collagen signaling to the fibroblast is dependent on integrins α1β1. CONCLUSIONS/SIGNIFICANCE: Taken together, these findings demonstrate for the first time that a RAGE independent mechanism is involved in 3DG-collagen-induced apoptosis. Moreover, the ER stress pathway through activation of Nox4 by integrins α1β1 plays a key role in 3DG-collagen-induced caspase-3 activation, which may play an important role in the pathogenesis of diabetic wounds.
format Text
id pubmed-2885413
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-28854132010-06-17 Precursor of Advanced Glycation End Products Mediates ER-Stress-Induced Caspase-3 Activation of Human Dermal Fibroblasts through NAD(P)H Oxidase 4 Loughlin, Danielle T. Artlett, Carol M. PLoS One Research Article BACKGROUND: The precursor for advanced glycation end products, 3-deoxyglucosone (3DG) is highly upregulated in skin explants of diabetic cutaneous wounds, and has been shown to negatively impact dermal fibroblasts, which are crucial in wound remodeling. 3DG induces apoptosis however; the mechanisms involved in the apoptotic action of 3DG in the pathogenesis of diabetic chronic wounds are poorly understood. Therefore, we sought to delineate novel mechanisms involved with the 3DG-collagen induced apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Using human dermal fibroblasts, we demonstrated that 3DG-modified collagen induces oxidative stress and caspase-3 activation. Oxidative stress was found to be dependent on the upregulation of NAD(P)H oxidase 4 (Nox4), a reactive oxygen species (ROS) Nox homologue, triggering endoplasmic reticulum (ER) stress, as assessed by the ER stress-induced apoptosis marker Growth Arrest and DNA Damage-inducible gene 153 (GADD153). We demonstrated that 3DG-collagen activated GADD153 via phosphorylation of p38 mitogen activated protein kinase (MAPK), and this was dependent on upstream ROS. Inhibition of ROS and/or p38 MAPK abrogated 3DG-collagen induced caspase-3 activation. Our investigations also demonstrated that 3DG-collagen-induced caspase-3 activation did not signal through the canonical receptor for advanced glycation end products (RAGE) but through integrin α1β1. To further verify the role of integrins, neutralization of integrins α1β1 prevented 3DG-collagen-induced upregulation of ROS, GADD153, and caspase-3 activation; suggesting that 3DG-collagen signaling to the fibroblast is dependent on integrins α1β1. CONCLUSIONS/SIGNIFICANCE: Taken together, these findings demonstrate for the first time that a RAGE independent mechanism is involved in 3DG-collagen-induced apoptosis. Moreover, the ER stress pathway through activation of Nox4 by integrins α1β1 plays a key role in 3DG-collagen-induced caspase-3 activation, which may play an important role in the pathogenesis of diabetic wounds. Public Library of Science 2010-06-14 /pmc/articles/PMC2885413/ /pubmed/20559423 http://dx.doi.org/10.1371/journal.pone.0011093 Text en Loughlin, Artlett. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Loughlin, Danielle T.
Artlett, Carol M.
Precursor of Advanced Glycation End Products Mediates ER-Stress-Induced Caspase-3 Activation of Human Dermal Fibroblasts through NAD(P)H Oxidase 4
title Precursor of Advanced Glycation End Products Mediates ER-Stress-Induced Caspase-3 Activation of Human Dermal Fibroblasts through NAD(P)H Oxidase 4
title_full Precursor of Advanced Glycation End Products Mediates ER-Stress-Induced Caspase-3 Activation of Human Dermal Fibroblasts through NAD(P)H Oxidase 4
title_fullStr Precursor of Advanced Glycation End Products Mediates ER-Stress-Induced Caspase-3 Activation of Human Dermal Fibroblasts through NAD(P)H Oxidase 4
title_full_unstemmed Precursor of Advanced Glycation End Products Mediates ER-Stress-Induced Caspase-3 Activation of Human Dermal Fibroblasts through NAD(P)H Oxidase 4
title_short Precursor of Advanced Glycation End Products Mediates ER-Stress-Induced Caspase-3 Activation of Human Dermal Fibroblasts through NAD(P)H Oxidase 4
title_sort precursor of advanced glycation end products mediates er-stress-induced caspase-3 activation of human dermal fibroblasts through nad(p)h oxidase 4
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885413/
https://www.ncbi.nlm.nih.gov/pubmed/20559423
http://dx.doi.org/10.1371/journal.pone.0011093
work_keys_str_mv AT loughlindaniellet precursorofadvancedglycationendproductsmediateserstressinducedcaspase3activationofhumandermalfibroblaststhroughnadphoxidase4
AT artlettcarolm precursorofadvancedglycationendproductsmediateserstressinducedcaspase3activationofhumandermalfibroblaststhroughnadphoxidase4