Cargando…

Elastic network model of allosteric regulation in protein kinase PDK1

BACKGROUND: Structural switches upon binding of phosphorylated moieties underpin many signalling networks. The ligand activation is a form of allosteric modulation of the protein, where the binding site is remote from the structural change in the protein. Recently this structural switch has been ele...

Descripción completa

Detalles Bibliográficos
Autor principal: Williams, Gareth
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888814/
https://www.ncbi.nlm.nih.gov/pubmed/20500829
http://dx.doi.org/10.1186/1472-6807-10-11
Descripción
Sumario:BACKGROUND: Structural switches upon binding of phosphorylated moieties underpin many signalling networks. The ligand activation is a form of allosteric modulation of the protein, where the binding site is remote from the structural change in the protein. Recently this structural switch has been elegantly demonstrated with the crystallisation of the activated form of 3-phosphoinositide-dependent protein kinase-1 (PDK1). The purpose of the present work is to determine whether the allosteric coupling in PDK1 emerges at the level of a simple coarse grained model of protein dynamics. RESULTS: It is shown here that the allosteric effects of the agonist binding to the small lobe upon the activation loop in the large lobe of PDK1 are explainable within a simple 'ball and spring' elastic network model (ENM) of protein dynamics. In particular, the model shows that the bound phospho peptide mimetic fluctuations have a high degree of correlation with the activation loop of PDK1. CONCLUSIONS: The ENM approach to small molecule activation of proteins may offer a first pass predictive methodology where affinity is encoded in residues remote from the active site, and aid in the design of specific protein agonists that enhance the allosteric coupling and antagonist that repress it.