Cargando…

Targeting Mitochondrial Cell Death Pathway to Overcome Drug Resistance with a Newly Developed Iron Chelate

BACKGROUND: Multi drug resistance (MDR) or cross-resistance to multiple classes of chemotherapeutic agents is a major obstacle to successful application of chemotherapy and a basic problem in cancer biology. The multidrug resistance gene, MDR1, and its gene product P-glycoprotein (P-gp) are an impor...

Descripción completa

Detalles Bibliográficos
Autores principales: Ganguly, Avishek, Basu, Soumya, Chakraborty, Paramita, Chatterjee, Shilpak, Sarkar, Avijit, Chatterjee, Mitali, Choudhuri, Soumitra Kumar
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889820/
https://www.ncbi.nlm.nih.gov/pubmed/20582168
http://dx.doi.org/10.1371/journal.pone.0011253
Descripción
Sumario:BACKGROUND: Multi drug resistance (MDR) or cross-resistance to multiple classes of chemotherapeutic agents is a major obstacle to successful application of chemotherapy and a basic problem in cancer biology. The multidrug resistance gene, MDR1, and its gene product P-glycoprotein (P-gp) are an important determinant of MDR. Therefore, there is an urgent need for development of novel compounds that are not substrates of P-glycoprotein and are effective against drug-resistant cancer. METHODOLOGY/PRINCIPAL FINDINGS: In this present study, we have synthesized a novel, redox active Fe (II) complex (chelate), iron N- (2-hydroxy acetophenone) glycinate (FeNG). The structure of the complex has been determined by spectroscopic means. To evaluate the cytotoxic effect of FeNG we used doxorubicin resistant and/or sensitive T lymphoblastic leukemia cells and show that FeNG kills both the cell types irrespective of their MDR phenotype. Moreover, FeNG induces apoptosis in doxorubicin resistance T lymphoblastic leukemia cell through mitochondrial pathway via generation reactive oxygen species (ROS). This is substantiated by the fact that the antioxidant N-acetyle-cysteine (NAC) could completely block ROS generation and, subsequently, abrogated FeNG induced apoptosis. Therefore, FeNG induces the doxorubicin resistant T lymphoblastic leukemia cells to undergo apoptosis and thus overcome MDR. CONCLUSION/SIGNIFICANCE: Our study provides evidence that FeNG, a redox active metal chelate may be a promising new therapeutic agent against drug resistance cancers.