Cargando…

A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization

BACKGROUND: G protein-coupled receptors (GPCRs) represent a family of well-characterized drug targets with significant therapeutic value. Phylogenetic classifications may help to understand the characteristics of individual GPCRs and their subtypes. Previous phylogenetic classifications were all bas...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Horst, Eelke, Peironcely, Julio E, IJzerman, Adriaan P, Beukers, Margot W, Lane, Jonathan R, van Vlijmen, Herman WT, Emmerich, Michael TM, Okuno, Yasushi, Bender, Andreas
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897831/
https://www.ncbi.nlm.nih.gov/pubmed/20537162
http://dx.doi.org/10.1186/1471-2105-11-316
_version_ 1782183441551327232
author van der Horst, Eelke
Peironcely, Julio E
IJzerman, Adriaan P
Beukers, Margot W
Lane, Jonathan R
van Vlijmen, Herman WT
Emmerich, Michael TM
Okuno, Yasushi
Bender, Andreas
author_facet van der Horst, Eelke
Peironcely, Julio E
IJzerman, Adriaan P
Beukers, Margot W
Lane, Jonathan R
van Vlijmen, Herman WT
Emmerich, Michael TM
Okuno, Yasushi
Bender, Andreas
author_sort van der Horst, Eelke
collection PubMed
description BACKGROUND: G protein-coupled receptors (GPCRs) represent a family of well-characterized drug targets with significant therapeutic value. Phylogenetic classifications may help to understand the characteristics of individual GPCRs and their subtypes. Previous phylogenetic classifications were all based on the sequences of receptors, adding only minor information about the ligand binding properties of the receptors. In this work, we compare a sequence-based classification of receptors to a ligand-based classification of the same group of receptors, and evaluate the potential to use sequence relatedness as a predictor for ligand interactions thus aiding the quest for ligands of orphan receptors. RESULTS: We present a classification of GPCRs that is purely based on their ligands, complementing sequence-based phylogenetic classifications of these receptors. Targets were hierarchically classified into phylogenetic trees, for both sequence space and ligand (substructure) space. The overall organization of the sequence-based tree and substructure-based tree was similar; in particular, the adenosine receptors cluster together as well as most peptide receptor subtypes (e.g. opioid, somatostatin) and adrenoceptor subtypes. In ligand space, the prostanoid and cannabinoid receptors are more distant from the other targets, whereas the tachykinin receptors, the oxytocin receptor, and serotonin receptors are closer to the other targets, which is indicative for ligand promiscuity. In 93% of the receptors studied, de-orphanization of a simulated orphan receptor using the ligands of related receptors performed better than random (AUC > 0.5) and for 35% of receptors de-orphanization performance was good (AUC > 0.7). CONCLUSIONS: We constructed a phylogenetic classification of GPCRs that is solely based on the ligands of these receptors. The similarities and differences with traditional sequence-based classifications were investigated: our ligand-based classification uncovers relationships among GPCRs that are not apparent from the sequence-based classification. This will shed light on potential cross-reactivity of GPCR ligands and will aid the design of new ligands with the desired activity profiles. In addition, we linked the ligand-based classification with a ligand-focused sequence-based classification described in literature and proved the potential of this method for de-orphanization of GPCRs.
format Text
id pubmed-2897831
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-28978312010-07-07 A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization van der Horst, Eelke Peironcely, Julio E IJzerman, Adriaan P Beukers, Margot W Lane, Jonathan R van Vlijmen, Herman WT Emmerich, Michael TM Okuno, Yasushi Bender, Andreas BMC Bioinformatics Research article BACKGROUND: G protein-coupled receptors (GPCRs) represent a family of well-characterized drug targets with significant therapeutic value. Phylogenetic classifications may help to understand the characteristics of individual GPCRs and their subtypes. Previous phylogenetic classifications were all based on the sequences of receptors, adding only minor information about the ligand binding properties of the receptors. In this work, we compare a sequence-based classification of receptors to a ligand-based classification of the same group of receptors, and evaluate the potential to use sequence relatedness as a predictor for ligand interactions thus aiding the quest for ligands of orphan receptors. RESULTS: We present a classification of GPCRs that is purely based on their ligands, complementing sequence-based phylogenetic classifications of these receptors. Targets were hierarchically classified into phylogenetic trees, for both sequence space and ligand (substructure) space. The overall organization of the sequence-based tree and substructure-based tree was similar; in particular, the adenosine receptors cluster together as well as most peptide receptor subtypes (e.g. opioid, somatostatin) and adrenoceptor subtypes. In ligand space, the prostanoid and cannabinoid receptors are more distant from the other targets, whereas the tachykinin receptors, the oxytocin receptor, and serotonin receptors are closer to the other targets, which is indicative for ligand promiscuity. In 93% of the receptors studied, de-orphanization of a simulated orphan receptor using the ligands of related receptors performed better than random (AUC > 0.5) and for 35% of receptors de-orphanization performance was good (AUC > 0.7). CONCLUSIONS: We constructed a phylogenetic classification of GPCRs that is solely based on the ligands of these receptors. The similarities and differences with traditional sequence-based classifications were investigated: our ligand-based classification uncovers relationships among GPCRs that are not apparent from the sequence-based classification. This will shed light on potential cross-reactivity of GPCR ligands and will aid the design of new ligands with the desired activity profiles. In addition, we linked the ligand-based classification with a ligand-focused sequence-based classification described in literature and proved the potential of this method for de-orphanization of GPCRs. BioMed Central 2010-06-10 /pmc/articles/PMC2897831/ /pubmed/20537162 http://dx.doi.org/10.1186/1471-2105-11-316 Text en Copyright ©2010 van der Horst et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research article
van der Horst, Eelke
Peironcely, Julio E
IJzerman, Adriaan P
Beukers, Margot W
Lane, Jonathan R
van Vlijmen, Herman WT
Emmerich, Michael TM
Okuno, Yasushi
Bender, Andreas
A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization
title A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization
title_full A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization
title_fullStr A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization
title_full_unstemmed A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization
title_short A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization
title_sort novel chemogenomics analysis of g protein-coupled receptors (gpcrs) and their ligands: a potential strategy for receptor de-orphanization
topic Research article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897831/
https://www.ncbi.nlm.nih.gov/pubmed/20537162
http://dx.doi.org/10.1186/1471-2105-11-316
work_keys_str_mv AT vanderhorsteelke anovelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT peironcelyjulioe anovelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT ijzermanadriaanp anovelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT beukersmargotw anovelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT lanejonathanr anovelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT vanvlijmenhermanwt anovelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT emmerichmichaeltm anovelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT okunoyasushi anovelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT benderandreas anovelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT vanderhorsteelke novelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT peironcelyjulioe novelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT ijzermanadriaanp novelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT beukersmargotw novelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT lanejonathanr novelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT vanvlijmenhermanwt novelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT emmerichmichaeltm novelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT okunoyasushi novelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization
AT benderandreas novelchemogenomicsanalysisofgproteincoupledreceptorsgpcrsandtheirligandsapotentialstrategyforreceptordeorphanization