Cargando…

Real-Time Relative qPCR without Reference to Control Samples and Estimation of Run-Specific PCR Parameters from Run-Internal Mini-Standard Curves

BACKGROUND: Real-Time quantitative PCR is an important tool in research and clinical settings. Here, we describe two new approaches that broaden the scope of real-time quantitative PCR; namely, run-internal mini standard curves (RIMS) and direct real-time relative quantitative PCR (drqPCR). RIMS are...

Descripción completa

Detalles Bibliográficos
Autores principales: Bernth Jensen, Jens Magnus, Petersen, Mikkel Steen, Stegger, Marc, Østergaard, Lars J., Møller, Bjarne K.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908630/
https://www.ncbi.nlm.nih.gov/pubmed/20661435
http://dx.doi.org/10.1371/journal.pone.0011723
Descripción
Sumario:BACKGROUND: Real-Time quantitative PCR is an important tool in research and clinical settings. Here, we describe two new approaches that broaden the scope of real-time quantitative PCR; namely, run-internal mini standard curves (RIMS) and direct real-time relative quantitative PCR (drqPCR). RIMS are an efficient alternative to traditional standard curves and provide both run-specific and target-specific estimates of PCR parameters. The drqPCR enables direct estimation of target ratios without reference to conventional control samples. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we compared RIMS-based drqPCR with classical quantifications based on external standard curves and the “comparative Ct method”. Specifically, we used a raw real-time PCR dataset as the basis for more than two-and-a-half million simulated quantifications with various user-defined conditions. Compared with classical approaches, we found that RIMS-based drqPCR provided superior precision and comparable accuracy. CONCLUSIONS/SIGNIFICANCE: The obviation of referencing to control samples is attractive whenever unpaired samples are quantified. This may be in clinical and research settings; for instance, studies on chimerism, TREC quantifications, copy number variations etc. Also, lab-to-lab comparability can be greatly simplified.