Cargando…

Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK

The kinesin-13, MCAK, is a critical regulator of microtubule dynamics in eukaryotic cells1. We have functionally dissected the structural features responsible for MCAK’s potent microtubule depolymerization activity. MCAK’s positively charged neck enhances its delivery to microtubule ends, not by tet...

Descripción completa

Detalles Bibliográficos
Autores principales: Cooper, Jeremy R., Wagenbach, Michael, Asbury, Charles L., Wordeman, Linda
Formato: Texto
Lenguaje:English
Publicado: 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909650/
https://www.ncbi.nlm.nih.gov/pubmed/19966798
http://dx.doi.org/10.1038/nsmb.1728
Descripción
Sumario:The kinesin-13, MCAK, is a critical regulator of microtubule dynamics in eukaryotic cells1. We have functionally dissected the structural features responsible for MCAK’s potent microtubule depolymerization activity. MCAK’s positively charged neck enhances its delivery to microtubule ends, not by tethering the molecule to microtubules during diffusion, as commonly thought, but by catalyzing the association of MCAK to microtubules. On the other hand, this same positively charged neck slightly diminishes MCAK’s ability to remove tubulin subunits once at the microtubule end. Conversely, dimerization reduces MCAK delivery but improves MCAK’s ability to remove tubulin subunits. The reported kinetics for these events predict a non-specific binding mechanism that may represent a paradigm for the diffusive interaction of many microtubule binding proteins.