Cargando…
A factor model to analyze heterogeneity in gene expression
BACKGROUND: Microarray technology allows the simultaneous analysis of thousands of genes within a single experiment. Significance analyses of transcriptomic data ignore the gene dependence structure. This leads to correlation among test statistics which affects a strong control of the false discover...
Autores principales: | Blum, Yuna, Le Mignon, Guillaume, Lagarrigue, Sandrine, Causeur, David |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911460/ https://www.ncbi.nlm.nih.gov/pubmed/20598132 http://dx.doi.org/10.1186/1471-2105-11-368 |
Ejemplares similares
-
Complex trait subtypes identification using transcriptome profiling reveals an interaction between two QTL affecting adiposity in chicken
por: Blum, Yuna, et al.
Publicado: (2011) -
Combining location-and-scale batch effect adjustment with data cleaning by latent factor adjustment
por: Hornung, Roman, et al.
Publicado: (2016) -
A novel biclustering approach with iterative optimization to analyze gene expression data
por: Sutheeworapong, Sawannee, et al.
Publicado: (2012) -
glbase: a framework for combining, analyzing and displaying heterogeneous genomic and high-throughput sequencing data
por: Hutchins, Andrew Paul, et al.
Publicado: (2014) -
A transcriptome multi-tissue analysis identifies biological pathways and genes associated with variations in feed efficiency of growing pigs
por: Gondret, Florence, et al.
Publicado: (2017)