Cargando…
Cyclophosphamide- metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study
INTRODUCTION: Cyclophosphamide-based adjuvant chemotherapy is a mainstay of treatment for women with node-positive breast cancer, but is not universally effective in preventing recurrence. Pharmacogenetic variability in drug metabolism is one possible mechanism of treatment failure. We hypothesize t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917014/ https://www.ncbi.nlm.nih.gov/pubmed/20459744 http://dx.doi.org/10.1186/bcr2570 |
_version_ | 1782185039775137792 |
---|---|
author | Gor, Priya P Su, H Irene Gray, Robert J Gimotty, Phyllis A Horn, Michelle Aplenc, Richard Vaughan, William P Tallman, Martin S Rebbeck, Timothy R DeMichele, Angela |
author_facet | Gor, Priya P Su, H Irene Gray, Robert J Gimotty, Phyllis A Horn, Michelle Aplenc, Richard Vaughan, William P Tallman, Martin S Rebbeck, Timothy R DeMichele, Angela |
author_sort | Gor, Priya P |
collection | PubMed |
description | INTRODUCTION: Cyclophosphamide-based adjuvant chemotherapy is a mainstay of treatment for women with node-positive breast cancer, but is not universally effective in preventing recurrence. Pharmacogenetic variability in drug metabolism is one possible mechanism of treatment failure. We hypothesize that functional single nucleotide polymorphisms (SNPs) in drug metabolizing enzymes (DMEs) that activate (CYPs) or metabolize (GSTs) cyclophosphamide account for some of the observed variability in disease outcomes. METHODS: We performed a retrospective cohort study of 350 women enrolled in a multicenter, randomized, adjuvant breast cancer chemotherapy trial (ECOG-2190/INT-0121). Subjects in this trial received standard-dose cyclophosphamide, doxorubicin and fluorouracil (CAF), followed by either observation or high-dose cyclophosphamide and thiotepa with stem cell rescue. We used bone marrow stem cell-derived genomic DNA from archival specimens to genotype CYP2B6, CYP2C9, CYP2D6, CYP3A4, CYP3A5, GSTM1, GSTT1, and GSTP1. Cox regression models were computed to determine associations between genotypes (individually or in combination) and disease-free survival (DFS) or overall survival (OS), adjusting for confounding clinical variables. RESULTS: In the full multivariable analysis, women with at least one CYP3A4 *1B variant allele had significantly worse DFS than those who were wild-type *1A/*1A (multivariate hazard ratio 2.79; 95% CI 1.52, 5.14). CYP2D6 genotype did not impact this association among patients with estrogen receptor (ER) -positive tumors scheduled to receive tamoxifen. CONCLUSIONS: These data support the hypothesis that genetic variability in cyclophosphamide metabolism independently impacts outcome from adjuvant chemotherapy for breast cancer. |
format | Text |
id | pubmed-2917014 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29170142010-08-06 Cyclophosphamide- metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study Gor, Priya P Su, H Irene Gray, Robert J Gimotty, Phyllis A Horn, Michelle Aplenc, Richard Vaughan, William P Tallman, Martin S Rebbeck, Timothy R DeMichele, Angela Breast Cancer Res Research Article INTRODUCTION: Cyclophosphamide-based adjuvant chemotherapy is a mainstay of treatment for women with node-positive breast cancer, but is not universally effective in preventing recurrence. Pharmacogenetic variability in drug metabolism is one possible mechanism of treatment failure. We hypothesize that functional single nucleotide polymorphisms (SNPs) in drug metabolizing enzymes (DMEs) that activate (CYPs) or metabolize (GSTs) cyclophosphamide account for some of the observed variability in disease outcomes. METHODS: We performed a retrospective cohort study of 350 women enrolled in a multicenter, randomized, adjuvant breast cancer chemotherapy trial (ECOG-2190/INT-0121). Subjects in this trial received standard-dose cyclophosphamide, doxorubicin and fluorouracil (CAF), followed by either observation or high-dose cyclophosphamide and thiotepa with stem cell rescue. We used bone marrow stem cell-derived genomic DNA from archival specimens to genotype CYP2B6, CYP2C9, CYP2D6, CYP3A4, CYP3A5, GSTM1, GSTT1, and GSTP1. Cox regression models were computed to determine associations between genotypes (individually or in combination) and disease-free survival (DFS) or overall survival (OS), adjusting for confounding clinical variables. RESULTS: In the full multivariable analysis, women with at least one CYP3A4 *1B variant allele had significantly worse DFS than those who were wild-type *1A/*1A (multivariate hazard ratio 2.79; 95% CI 1.52, 5.14). CYP2D6 genotype did not impact this association among patients with estrogen receptor (ER) -positive tumors scheduled to receive tamoxifen. CONCLUSIONS: These data support the hypothesis that genetic variability in cyclophosphamide metabolism independently impacts outcome from adjuvant chemotherapy for breast cancer. BioMed Central 2010 2010-05-10 /pmc/articles/PMC2917014/ /pubmed/20459744 http://dx.doi.org/10.1186/bcr2570 Text en Copyright ©2010 Gor et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Gor, Priya P Su, H Irene Gray, Robert J Gimotty, Phyllis A Horn, Michelle Aplenc, Richard Vaughan, William P Tallman, Martin S Rebbeck, Timothy R DeMichele, Angela Cyclophosphamide- metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study |
title | Cyclophosphamide- metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study |
title_full | Cyclophosphamide- metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study |
title_fullStr | Cyclophosphamide- metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study |
title_full_unstemmed | Cyclophosphamide- metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study |
title_short | Cyclophosphamide- metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study |
title_sort | cyclophosphamide- metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917014/ https://www.ncbi.nlm.nih.gov/pubmed/20459744 http://dx.doi.org/10.1186/bcr2570 |
work_keys_str_mv | AT gorpriyap cyclophosphamidemetabolizingenzymepolymorphismsandsurvivaloutcomesafteradjuvantchemotherapyfornodepositivebreastcanceraretrospectivecohortstudy AT suhirene cyclophosphamidemetabolizingenzymepolymorphismsandsurvivaloutcomesafteradjuvantchemotherapyfornodepositivebreastcanceraretrospectivecohortstudy AT grayrobertj cyclophosphamidemetabolizingenzymepolymorphismsandsurvivaloutcomesafteradjuvantchemotherapyfornodepositivebreastcanceraretrospectivecohortstudy AT gimottyphyllisa cyclophosphamidemetabolizingenzymepolymorphismsandsurvivaloutcomesafteradjuvantchemotherapyfornodepositivebreastcanceraretrospectivecohortstudy AT hornmichelle cyclophosphamidemetabolizingenzymepolymorphismsandsurvivaloutcomesafteradjuvantchemotherapyfornodepositivebreastcanceraretrospectivecohortstudy AT aplencrichard cyclophosphamidemetabolizingenzymepolymorphismsandsurvivaloutcomesafteradjuvantchemotherapyfornodepositivebreastcanceraretrospectivecohortstudy AT vaughanwilliamp cyclophosphamidemetabolizingenzymepolymorphismsandsurvivaloutcomesafteradjuvantchemotherapyfornodepositivebreastcanceraretrospectivecohortstudy AT tallmanmartins cyclophosphamidemetabolizingenzymepolymorphismsandsurvivaloutcomesafteradjuvantchemotherapyfornodepositivebreastcanceraretrospectivecohortstudy AT rebbecktimothyr cyclophosphamidemetabolizingenzymepolymorphismsandsurvivaloutcomesafteradjuvantchemotherapyfornodepositivebreastcanceraretrospectivecohortstudy AT demicheleangela cyclophosphamidemetabolizingenzymepolymorphismsandsurvivaloutcomesafteradjuvantchemotherapyfornodepositivebreastcanceraretrospectivecohortstudy |