Cargando…
Ubc13 dosage is critical for immunoglobulin gene conversion and gene targeting in vertebrate cells
In contrast to lower eukaryotes, most vertebrate cells are characterized by a moderate efficiency of homologous recombination (HR) and limited feasibility of targeted genetic modifications. As a notable exception, the chicken DT40 B cell line is distinguished by efficient homology-mediated repair of...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919702/ https://www.ncbi.nlm.nih.gov/pubmed/20223767 http://dx.doi.org/10.1093/nar/gkq154 |
Sumario: | In contrast to lower eukaryotes, most vertebrate cells are characterized by a moderate efficiency of homologous recombination (HR) and limited feasibility of targeted genetic modifications. As a notable exception, the chicken DT40 B cell line is distinguished by efficient homology-mediated repair of DNA lesions during Ig gene conversion, and also shows exceptionally high gene-targeting efficiencies. The molecular basis of these phenomena is elusive. Here we show that the activity levels of Ubc13, the E2 enzyme responsible for non-canonical K63-linked polyubiquitination, are critical for high efficiency of Ig gene conversion and gene targeting in DT40. Ubc13(+/−) cells show substantially lower homology-mediated repair, yet do not display changes in somatic hypermutation, overall DNA repair or cell proliferation. Our results suggest that modulation of the activity of K63-linked polyubiquitination may be used to customize HR efficiencies in vertebrate cells. |
---|