Cargando…
Polychlorinated Biphenyls Disrupt Intestinal Integrity via NADPH Oxidase-Induced Alterations of Tight Junction Protein Expression
BACKGROUND: Polychlorinated biphenyls (PCBs) are widely distributed environmental toxicants that contribute to numerous disease states. The main route of exposure to PCBs is through the gastrointestinal tract; however, little is known about the effects of PCBs on intestinal epithelial barrier functi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
National Institute of Environmental Health Sciences
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920918/ https://www.ncbi.nlm.nih.gov/pubmed/20299304 http://dx.doi.org/10.1289/ehp.0901751 |
Sumario: | BACKGROUND: Polychlorinated biphenyls (PCBs) are widely distributed environmental toxicants that contribute to numerous disease states. The main route of exposure to PCBs is through the gastrointestinal tract; however, little is known about the effects of PCBs on intestinal epithelial barrier functions. OBJECTIVE: The aim of the present study was to address the hypothesis that highly chlorinated PCBs can disrupt gut integrity at the level of tight junction (TJ) proteins. METHODS: Caco-2 human colon adenocarcinoma cells were exposed to one of the following PCB congeners: PCB153, PCB118, PCB104, and PCB126. We then assessed NAD(P)H oxidase (NOX) activity and expression and the barrier function of Caco-2 cells. In addition, the integrity of intestinal barrier function and expression of TJ proteins were evaluated in C57BL/6 mice exposed to individual PCBs by oral gavage. RESULTS: Exposure of Caco-2 cells to individual PCB congeners resulted in activation of NOX and increased permeability of fluorescein isothiocyanate (FITC)-labeled dextran (4 kDa). Treatment with PCB congeners also disrupted expression of TJ proteins zonula occludens-1 (ZO-1) and occludin in Caco-2 cells. Importantly, inhibition of NOX by apocynin significantly protected against PCB-mediated increase in epithelial permeability and alterations of ZO-1 protein expression. Exposure to PCBs also resulted in alterations of gut permeability via decreased expression of TJ proteins in an intact physiological animal model. CONCLUSIONS: These results suggest that oral exposure to highly chlorinated PCBs disrupts intestinal epithelial integrity and may directly contribute to the systemic effects of these toxicants. |
---|