Cargando…

The opening of the two pores of the Hv1 voltage-gated proton channel is tuned by cooperativity

In voltage-gated sodium, potassium, and calcium channels the functions of ion conduction and voltage sensing are performed by two distinct structural units: the pore domain and the voltage-sensing domain (VSD). In the Hv1 voltage-gated proton channel, the VSD has the remarkable property of performin...

Descripción completa

Detalles Bibliográficos
Autores principales: Tombola, Francesco, Ulbrich, Maximilian H., Kohout, Susy C., Isacoff, Ehud Y.
Formato: Texto
Lenguaje:English
Publicado: 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925041/
https://www.ncbi.nlm.nih.gov/pubmed/20023640
http://dx.doi.org/10.1038/nsmb.1738
Descripción
Sumario:In voltage-gated sodium, potassium, and calcium channels the functions of ion conduction and voltage sensing are performed by two distinct structural units: the pore domain and the voltage-sensing domain (VSD). In the Hv1 voltage-gated proton channel, the VSD has the remarkable property of performing both functions. Hv1 was recently found to dimerize and to form channels made of two pores. However, the channels were also found to function when dimerization was prevented, raising a question about the functional role of dimerization. Here we show that the two subunits of the Hv1 dimer influence one another during gating, with positive cooperativity shaping the response to voltage of the two pores. We also find that the two voltage sensors undergo conformational changes that precede pore opening and that these conformational changes are allosterically coupled between the two subunits. Our results point to a major role of dimerization in the modulation of Hv1 activity.