Cargando…
A Structure-Based Approach for Mapping Adverse Drug Reactions to the Perturbation of Underlying Biological Pathways
Adverse drug reactions (ADR), also known as side-effects, are complex undesired physiologic phenomena observed secondary to the administration of pharmaceuticals. Several phenomena underlie the emergence of each ADR; however, a dominant factor is the drug's ability to modulate one or more biolo...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925884/ https://www.ncbi.nlm.nih.gov/pubmed/20808786 http://dx.doi.org/10.1371/journal.pone.0012063 |
Sumario: | Adverse drug reactions (ADR), also known as side-effects, are complex undesired physiologic phenomena observed secondary to the administration of pharmaceuticals. Several phenomena underlie the emergence of each ADR; however, a dominant factor is the drug's ability to modulate one or more biological pathways. Understanding the biological processes behind the occurrence of ADRs would lead to the development of safer and more effective drugs. At present, no method exists to discover these ADR-pathway associations. In this paper we introduce a computational framework for identifying a subset of these associations based on the assumption that drugs capable of modulating the same pathway may induce similar ADRs. Our model exploits multiple information resources. First, we utilize a publicly available dataset pairing drugs with their observed ADRs. Second, we identify putative protein targets for each drug using the protein structure database and in-silico virtual docking. Third, we label each protein target with its known involvement in one or more biological pathways. Finally, the relationships among these information sources are mined using multiple stages of logistic-regression while controlling for over-fitting and multiple-hypothesis testing. As proof-of-concept, we examined a dataset of 506 ADRs, 730 drugs, and 830 human protein targets. Our method yielded 185 ADR-pathway associations of which 45 were selected to undergo a manual literature review. We found 32 associations to be supported by the scientific literature. |
---|