Cargando…
Oral N-Acetyl-Cysteine Attenuates Loss of Dopaminergic Terminals in α-Synuclein Overexpressing Mice
Levels of glutathione are lower in the substantia nigra (SN) early in Parkinson's disease (PD) and this may contribute to mitochondrial dysfunction and oxidative stress. Oxidative stress may increase the accumulation of toxic forms of α-synuclein (SNCA). We hypothesized that supplementation wit...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925900/ https://www.ncbi.nlm.nih.gov/pubmed/20808797 http://dx.doi.org/10.1371/journal.pone.0012333 |
_version_ | 1782185692580806656 |
---|---|
author | Clark, Joanne Clore, Elizabeth L. Zheng, Kangni Adame, Anthony Masliah, Eliezer Simon, David K. |
author_facet | Clark, Joanne Clore, Elizabeth L. Zheng, Kangni Adame, Anthony Masliah, Eliezer Simon, David K. |
author_sort | Clark, Joanne |
collection | PubMed |
description | Levels of glutathione are lower in the substantia nigra (SN) early in Parkinson's disease (PD) and this may contribute to mitochondrial dysfunction and oxidative stress. Oxidative stress may increase the accumulation of toxic forms of α-synuclein (SNCA). We hypothesized that supplementation with n-acetylcysteine (NAC), a source of cysteine – the limiting amino acid in glutathione synthesis, would protect against α-synuclein toxicity. Transgenic mice overexpressing wild-type human α-synuclein drank water supplemented with NAC or control water supplemented with alanine from ages 6 weeks to 1 year. NAC increased SN levels of glutathione within 5–7 weeks of treatment; however, this increase was not sustained at 1 year. Despite the transient nature of the impact of NAC on brain glutathione, the loss of dopaminergic terminals at 1 year associated with SNCA overexpression was significantly attenuated by NAC supplementation, as measured by immunoreactivity for tyrosine hydroxylase in the striatum (p = 0.007; unpaired, two-tailed t-test), with a similar but nonsignificant trend for dopamine transporter (DAT) immunoreactivity. NAC significantly decreased the levels of human SNCA in the brains of PDGFb-SNCA transgenic mice compared to alanine treated transgenics. This was associated with a decrease in nuclear NFκB localization and an increase in cytoplasmic localization of NFκB in the NAC-treated transgenics. Overall, these results indicate that oral NAC supplementation decreases SNCA levels in brain and partially protects against loss of dopaminergic terminals associated with overexpression of α-synuclein in this model. |
format | Text |
id | pubmed-2925900 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29259002010-08-31 Oral N-Acetyl-Cysteine Attenuates Loss of Dopaminergic Terminals in α-Synuclein Overexpressing Mice Clark, Joanne Clore, Elizabeth L. Zheng, Kangni Adame, Anthony Masliah, Eliezer Simon, David K. PLoS One Research Article Levels of glutathione are lower in the substantia nigra (SN) early in Parkinson's disease (PD) and this may contribute to mitochondrial dysfunction and oxidative stress. Oxidative stress may increase the accumulation of toxic forms of α-synuclein (SNCA). We hypothesized that supplementation with n-acetylcysteine (NAC), a source of cysteine – the limiting amino acid in glutathione synthesis, would protect against α-synuclein toxicity. Transgenic mice overexpressing wild-type human α-synuclein drank water supplemented with NAC or control water supplemented with alanine from ages 6 weeks to 1 year. NAC increased SN levels of glutathione within 5–7 weeks of treatment; however, this increase was not sustained at 1 year. Despite the transient nature of the impact of NAC on brain glutathione, the loss of dopaminergic terminals at 1 year associated with SNCA overexpression was significantly attenuated by NAC supplementation, as measured by immunoreactivity for tyrosine hydroxylase in the striatum (p = 0.007; unpaired, two-tailed t-test), with a similar but nonsignificant trend for dopamine transporter (DAT) immunoreactivity. NAC significantly decreased the levels of human SNCA in the brains of PDGFb-SNCA transgenic mice compared to alanine treated transgenics. This was associated with a decrease in nuclear NFκB localization and an increase in cytoplasmic localization of NFκB in the NAC-treated transgenics. Overall, these results indicate that oral NAC supplementation decreases SNCA levels in brain and partially protects against loss of dopaminergic terminals associated with overexpression of α-synuclein in this model. Public Library of Science 2010-08-23 /pmc/articles/PMC2925900/ /pubmed/20808797 http://dx.doi.org/10.1371/journal.pone.0012333 Text en Clark et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Clark, Joanne Clore, Elizabeth L. Zheng, Kangni Adame, Anthony Masliah, Eliezer Simon, David K. Oral N-Acetyl-Cysteine Attenuates Loss of Dopaminergic Terminals in α-Synuclein Overexpressing Mice |
title | Oral N-Acetyl-Cysteine Attenuates Loss of Dopaminergic Terminals in α-Synuclein Overexpressing Mice |
title_full | Oral N-Acetyl-Cysteine Attenuates Loss of Dopaminergic Terminals in α-Synuclein Overexpressing Mice |
title_fullStr | Oral N-Acetyl-Cysteine Attenuates Loss of Dopaminergic Terminals in α-Synuclein Overexpressing Mice |
title_full_unstemmed | Oral N-Acetyl-Cysteine Attenuates Loss of Dopaminergic Terminals in α-Synuclein Overexpressing Mice |
title_short | Oral N-Acetyl-Cysteine Attenuates Loss of Dopaminergic Terminals in α-Synuclein Overexpressing Mice |
title_sort | oral n-acetyl-cysteine attenuates loss of dopaminergic terminals in α-synuclein overexpressing mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925900/ https://www.ncbi.nlm.nih.gov/pubmed/20808797 http://dx.doi.org/10.1371/journal.pone.0012333 |
work_keys_str_mv | AT clarkjoanne oralnacetylcysteineattenuateslossofdopaminergicterminalsinasynucleinoverexpressingmice AT cloreelizabethl oralnacetylcysteineattenuateslossofdopaminergicterminalsinasynucleinoverexpressingmice AT zhengkangni oralnacetylcysteineattenuateslossofdopaminergicterminalsinasynucleinoverexpressingmice AT adameanthony oralnacetylcysteineattenuateslossofdopaminergicterminalsinasynucleinoverexpressingmice AT masliaheliezer oralnacetylcysteineattenuateslossofdopaminergicterminalsinasynucleinoverexpressingmice AT simondavidk oralnacetylcysteineattenuateslossofdopaminergicterminalsinasynucleinoverexpressingmice |