Cargando…

HIV-1 gp41 and TCRα Trans-Membrane Domains Share a Motif Exploited by the HIV Virus to Modulate T-Cell Proliferation

Viruses have evolved several strategies to modify cellular processes and evade the immune response in order to successfully infect, replicate, and persist in the host. By utilizing in-silico testing of a transmembrane sequence library derived from virus protein sequences, we have pin-pointed a nine...

Descripción completa

Detalles Bibliográficos
Autores principales: Cohen, Tomer, Cohen, Shmuel Jaffe, Antonovsky, Niv, Cohen, Irun R., Shai, Yechiel
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2932719/
https://www.ncbi.nlm.nih.gov/pubmed/20824090
http://dx.doi.org/10.1371/journal.ppat.1001085
Descripción
Sumario:Viruses have evolved several strategies to modify cellular processes and evade the immune response in order to successfully infect, replicate, and persist in the host. By utilizing in-silico testing of a transmembrane sequence library derived from virus protein sequences, we have pin-pointed a nine amino-acid motif shared by a group of different viruses; this motif resembles the transmembrane domain of the α-subunit of the T-cell receptor (TCRα). The most striking similarity was found within the immunodeficiency virus (SIV and HIV) glycoprotein 41 TMD (gp41 TMD). Previous studies have shown that stable interactions between TCRα and CD3 are localized to this nine amino acid motif within TCRα, and a peptide derived from it (TCRα TMD, GLRILLLKV) interfered and intervened in the TCR function when added exogenously. We now report that the gp41 TMD peptide co-localizes with CD3 within the TCR complex and inhibits T cell proliferation in vitro. However, the inhibitory mechanism of gp41 TMD differs from that of the TCRα TMD and also from the other two known immunosuppressive regions within gp41.