Cargando…

Structural Basis for the Transcriptional Regulation of Membrane Lipid Homeostasis

DesT is a transcriptional repressor that regulates the genes which control the unsaturated:saturated fatty acid ratio available for membrane lipid synthesis. DesT bound to unsaturated acyl-CoA has a high affinity for its cognate palindromic DNA-binding site, whereas DesT bound to saturated acyl-CoA...

Descripción completa

Detalles Bibliográficos
Autores principales: Miller, Darcie J., Zhang, Yong-Mei, Subramanian, Chitra, Rock, Charles O., White, Stephen W.
Formato: Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935088/
https://www.ncbi.nlm.nih.gov/pubmed/20639888
http://dx.doi.org/10.1038/nsmb.1847
Descripción
Sumario:DesT is a transcriptional repressor that regulates the genes which control the unsaturated:saturated fatty acid ratio available for membrane lipid synthesis. DesT bound to unsaturated acyl-CoA has a high affinity for its cognate palindromic DNA-binding site, whereas DesT bound to saturated acyl-CoA does not bind to this site. Structural analyses of the DesT–oleoyl-CoA–DNA and DesT–palmitoyl-CoA complexes reveal that acyl chain shape directly influences the packing of hydrophobic core residues within the DesT ligand-binding domain. These changes are propagated to the paired DNA-binding domains via conformational changes to modulate DNA binding. These structural interpretations are supported by the in vitro and in vivo characterization of site-directed mutants. The regulation of DesT by the unsaturated:saturated ratio of acyl chains rather than the concentration of a single ligand is a paradigm for understanding transcriptional regulation of membrane lipid homeostasis.