Cargando…
An Integrative Multi-Network and Multi-Classifier Approach to Predict Genetic Interactions
Genetic interactions occur when a combination of mutations results in a surprising phenotype. These interactions capture functional redundancy, and thus are important for predicting function, dissecting protein complexes into functional pathways, and exploring the mechanistic underpinnings of common...
Autores principales: | Pandey, Gaurav, Zhang, Bin, Chang, Aaron N., Myers, Chad L., Zhu, Jun, Kumar, Vipin, Schadt, Eric E. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936518/ https://www.ncbi.nlm.nih.gov/pubmed/20838583 http://dx.doi.org/10.1371/journal.pcbi.1000928 |
Ejemplares similares
-
Incorporating functional inter-relationships into protein function prediction algorithms
por: Pandey, Gaurav, et al.
Publicado: (2009) -
Multi-Input Distributed Classifiers for Synthetic Genetic Circuits
por: Kanakov, Oleg, et al.
Publicado: (2015) -
An integrated approach to characterize genetic interaction networks in yeast metabolism
por: Szappanos, Balázs, et al.
Publicado: (2011) -
diff_classifier: Parallelization of multi-particle tracking video analyses
por: Curtis, Chad, et al.
Publicado: (2019) -
Identification of Multi-Functional Enzyme with Multi-Label Classifier
por: Che, Yuxin, et al.
Publicado: (2016)