Cargando…
A two-parameter generalized Poisson model to improve the analysis of RNA-seq data
Deep sequencing of RNAs (RNA-seq) has been a useful tool to characterize and quantify transcriptomes. However, there are significant challenges in the analysis of RNA-seq data, such as how to separate signals from sequencing bias and how to perform reasonable normalization. Here, we focus on a funda...
Autores principales: | Srivastava, Sudeep, Chen, Liang |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943596/ https://www.ncbi.nlm.nih.gov/pubmed/20671027 http://dx.doi.org/10.1093/nar/gkq670 |
Ejemplares similares
-
Differential expression analysis for RNAseq using Poisson mixed models
por: Sun, Shiquan, et al.
Publicado: (2017) -
Linnorm: improved statistical analysis for single cell RNA-seq expression data
por: Yip, Shun H., et al.
Publicado: (2017) -
ARH-seq: identification of differential splicing in RNA-seq data
por: Rasche, Axel, et al.
Publicado: (2014) -
Improving the value of public RNA-seq expression data by phenotype prediction
por: Ellis, Shannon E, et al.
Publicado: (2018) -
Computational analysis of bacterial RNA-Seq data
por: McClure, Ryan, et al.
Publicado: (2013)