Cargando…
Conversion of Helicobacter pylori CagA from senescence inducer to oncogenic driver through polarity-dependent regulation of p21
The Helicobacter pylori CagA bacterial oncoprotein plays a critical role in gastric carcinogenesis. Upon delivery into epithelial cells, CagA causes loss of polarity and activates aberrant Erk signaling. We show that CagA-induced Erk activation results in senescence and mitogenesis in nonpolarized a...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947069/ https://www.ncbi.nlm.nih.gov/pubmed/20855497 http://dx.doi.org/10.1084/jem.20100602 |
Sumario: | The Helicobacter pylori CagA bacterial oncoprotein plays a critical role in gastric carcinogenesis. Upon delivery into epithelial cells, CagA causes loss of polarity and activates aberrant Erk signaling. We show that CagA-induced Erk activation results in senescence and mitogenesis in nonpolarized and polarized epithelial cells, respectively. In nonpolarized epithelial cells, Erk activation results in oncogenic stress, up-regulation of the p21(Waf1/Cip1) cyclin-dependent kinase inhibitor, and induction of senescence. In polarized epithelial cells, CagA-driven Erk signals prevent p21(Waf1/Cip1) expression by activating a guanine nucleotide exchange factor–H1–RhoA–RhoA-associated kinase–c-Myc pathway. The microRNAs miR-17 and miR-20a, induced by c-Myc, are needed to suppress p21(Waf1/Cip1) expression. CagA also drives an epithelial-mesenchymal transition in polarized epithelial cells. These findings suggest that CagA exploits a polarity-signaling pathway to induce oncogenesis. |
---|