Cargando…
Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model
Recent advances in structural bioinformatics have enabled the prediction of protein-drug off-targets based on their ligand binding sites. Concurrent developments in systems biology allow for prediction of the functional effects of system perturbations using large-scale network models. Integration of...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950675/ https://www.ncbi.nlm.nih.gov/pubmed/20957118 http://dx.doi.org/10.1371/journal.pcbi.1000938 |
_version_ | 1782187656761835520 |
---|---|
author | Chang, Roger L. Xie, Li Xie, Lei Bourne, Philip E. Palsson, Bernhard Ø. |
author_facet | Chang, Roger L. Xie, Li Xie, Lei Bourne, Philip E. Palsson, Bernhard Ø. |
author_sort | Chang, Roger L. |
collection | PubMed |
description | Recent advances in structural bioinformatics have enabled the prediction of protein-drug off-targets based on their ligand binding sites. Concurrent developments in systems biology allow for prediction of the functional effects of system perturbations using large-scale network models. Integration of these two capabilities provides a framework for evaluating metabolic drug response phenotypes in silico. This combined approach was applied to investigate the hypertensive side effect of the cholesteryl ester transfer protein inhibitor torcetrapib in the context of human renal function. A metabolic kidney model was generated in which to simulate drug treatment. Causal drug off-targets were predicted that have previously been observed to impact renal function in gene-deficient patients and may play a role in the adverse side effects observed in clinical trials. Genetic risk factors for drug treatment were also predicted that correspond to both characterized and unknown renal metabolic disorders as well as cryptic genetic deficiencies that are not expected to exhibit a renal disorder phenotype except under drug treatment. This study represents a novel integration of structural and systems biology and a first step towards computational systems medicine. The methodology introduced herein has important implications for drug development and personalized medicine. |
format | Text |
id | pubmed-2950675 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29506752010-10-18 Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model Chang, Roger L. Xie, Li Xie, Lei Bourne, Philip E. Palsson, Bernhard Ø. PLoS Comput Biol Research Article Recent advances in structural bioinformatics have enabled the prediction of protein-drug off-targets based on their ligand binding sites. Concurrent developments in systems biology allow for prediction of the functional effects of system perturbations using large-scale network models. Integration of these two capabilities provides a framework for evaluating metabolic drug response phenotypes in silico. This combined approach was applied to investigate the hypertensive side effect of the cholesteryl ester transfer protein inhibitor torcetrapib in the context of human renal function. A metabolic kidney model was generated in which to simulate drug treatment. Causal drug off-targets were predicted that have previously been observed to impact renal function in gene-deficient patients and may play a role in the adverse side effects observed in clinical trials. Genetic risk factors for drug treatment were also predicted that correspond to both characterized and unknown renal metabolic disorders as well as cryptic genetic deficiencies that are not expected to exhibit a renal disorder phenotype except under drug treatment. This study represents a novel integration of structural and systems biology and a first step towards computational systems medicine. The methodology introduced herein has important implications for drug development and personalized medicine. Public Library of Science 2010-09-23 /pmc/articles/PMC2950675/ /pubmed/20957118 http://dx.doi.org/10.1371/journal.pcbi.1000938 Text en Chang et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Chang, Roger L. Xie, Li Xie, Lei Bourne, Philip E. Palsson, Bernhard Ø. Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model |
title | Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model |
title_full | Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model |
title_fullStr | Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model |
title_full_unstemmed | Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model |
title_short | Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model |
title_sort | drug off-target effects predicted using structural analysis in the context of a metabolic network model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950675/ https://www.ncbi.nlm.nih.gov/pubmed/20957118 http://dx.doi.org/10.1371/journal.pcbi.1000938 |
work_keys_str_mv | AT changrogerl drugofftargeteffectspredictedusingstructuralanalysisinthecontextofametabolicnetworkmodel AT xieli drugofftargeteffectspredictedusingstructuralanalysisinthecontextofametabolicnetworkmodel AT xielei drugofftargeteffectspredictedusingstructuralanalysisinthecontextofametabolicnetworkmodel AT bournephilipe drugofftargeteffectspredictedusingstructuralanalysisinthecontextofametabolicnetworkmodel AT palssonbernhardø drugofftargeteffectspredictedusingstructuralanalysisinthecontextofametabolicnetworkmodel |