Cargando…

ETV1 is a lineage-specific survival factor in GIST and cooperates with KIT in oncogenesis

Gastrointestinal stromal tumour (GIST) is the most common human sarcoma and is primarily defined by activating mutations in the KIT or PDGFRA receptor tyrosine kinases1,2. KIT is highly expressed in interstitial cells of Cajal (ICCs)—the presumed cell of origin for GIST—as well as in hematopoietic s...

Descripción completa

Detalles Bibliográficos
Autores principales: Chi, Ping, Chen, Yu, Zhang, Lei, Guo, Xingyi, Wongvipat, John, Shamu, Tambudzai, Fletcher, Jonathan A., Dewell, Scott, Maki, Robert G., Zheng, Deyou, Antonescu, Cristina R., Allis, C. David, Sawyers, Charles L.
Formato: Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955195/
https://www.ncbi.nlm.nih.gov/pubmed/20927104
http://dx.doi.org/10.1038/nature09409
Descripción
Sumario:Gastrointestinal stromal tumour (GIST) is the most common human sarcoma and is primarily defined by activating mutations in the KIT or PDGFRA receptor tyrosine kinases1,2. KIT is highly expressed in interstitial cells of Cajal (ICCs)—the presumed cell of origin for GIST—as well as in hematopoietic stem cells, melanocytes, mast cells and germ cells2,3. Yet, families harbouring germline activating KIT mutations and mice with knock-in Kit mutations almost exclusively develop ICC hyperplasia and GIST4–7, suggesting that the cellular context is important for KIT to mediated oncogenesis. Here we show that the ETS family member ETV1 is highly expressed in the subtypes of ICCs sensitive to oncogenic KIT mediated transformation8, and is required for their development. In addition, ETV1 is universally highly expressed in GISTs and is required for growth of imatinib-sensitive and resistant GIST cell lines. Transcriptome profiling and global analyses of ETV1-binding sites suggest that ETV1 is a master regulator of an ICC-GIST-specific transcription network mainly through enhancer binding. The ETV1 transcriptional program is further regulated by activated KIT, which prolongs ETV1 protein stability and cooperates with ETV1 to promote tumourigenesis. We propose that GIST arises from ICCs with high levels of endogenous ETV1 expression that, when coupled with an activating KIT mutation, drives an oncogenic ETS transcription program. This differs from other ETS-dependent tumours such as prostate cancer, melanoma, and Ewing sarcoma where genomic translocation or amplification drives aberrant ETS expression9–11 and represents a novel mechanism of oncogenic transcription factor activation.