Cargando…
Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines
The tumor suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome 10) and the androgen receptor (AR) play important roles in tumor development and progression in prostate carcinogenesis. Among many functions, PTEN negatively regulates the cytoplasmic phosphatidylinositol-3-kinase/...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957324/ https://www.ncbi.nlm.nih.gov/pubmed/20729295 http://dx.doi.org/10.1093/hmg/ddq354 |
_version_ | 1782188222721294336 |
---|---|
author | Wang, Yu Romigh, Todd He, Xin Orloff, Mohammed S. Silverman, Robert H. Heston, Warren D. Eng, Charis |
author_facet | Wang, Yu Romigh, Todd He, Xin Orloff, Mohammed S. Silverman, Robert H. Heston, Warren D. Eng, Charis |
author_sort | Wang, Yu |
collection | PubMed |
description | The tumor suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome 10) and the androgen receptor (AR) play important roles in tumor development and progression in prostate carcinogenesis. Among many functions, PTEN negatively regulates the cytoplasmic phosphatidylinositol-3-kinase/AKT anti-apoptotic pathway; and nuclear PTEN affects the cell cycle by also negatively regulating the MAPK pathway via cyclin D. Decreased PTEN expression is correlated with prostate cancer progression. Over-expression of AR and upregulation of AR transcriptional activity are often observed in the later stages of prostate cancer. Recent studies indicate that PTEN regulates AR activity and stability. However, the mechanism of how AR regulates PTEN has never been studied. Furthermore, resveratrol, a phytoalexin enriched in red grapes, strawberries and peanuts, has been shown to inhibit AR transcriptional activity in prostate cancer cells. In this study, we use prostate cancer cell lines to test the hypothesis that resveratrol inhibits cellular proliferation in both AR-dependent and -independent mechanisms. We show that resveratrol inhibits AR transcriptional activity in both androgen-dependent and -independent prostate cancer cells. Additionally, resveratrol stimulates PTEN expression through AR inhibition. In contrast, resveratrol directly binds epidermal growth factor receptor (EGFR) rapidly inhibiting EGFR phosphorylation, resulting in decreased AKT phosphorylation, in an AR-independent manner. Thus, resveratrol may act as potential adjunctive treatment for late-stage hormone refractory prostate cancer. More importantly, for the first time, our study demonstrates the mechanism by which AR regulates PTEN expression at the transcription level, indicating the direct link between a nuclear receptor and the PI3K/AKT pathway. |
format | Text |
id | pubmed-2957324 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-29573242010-10-20 Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines Wang, Yu Romigh, Todd He, Xin Orloff, Mohammed S. Silverman, Robert H. Heston, Warren D. Eng, Charis Hum Mol Genet Articles The tumor suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome 10) and the androgen receptor (AR) play important roles in tumor development and progression in prostate carcinogenesis. Among many functions, PTEN negatively regulates the cytoplasmic phosphatidylinositol-3-kinase/AKT anti-apoptotic pathway; and nuclear PTEN affects the cell cycle by also negatively regulating the MAPK pathway via cyclin D. Decreased PTEN expression is correlated with prostate cancer progression. Over-expression of AR and upregulation of AR transcriptional activity are often observed in the later stages of prostate cancer. Recent studies indicate that PTEN regulates AR activity and stability. However, the mechanism of how AR regulates PTEN has never been studied. Furthermore, resveratrol, a phytoalexin enriched in red grapes, strawberries and peanuts, has been shown to inhibit AR transcriptional activity in prostate cancer cells. In this study, we use prostate cancer cell lines to test the hypothesis that resveratrol inhibits cellular proliferation in both AR-dependent and -independent mechanisms. We show that resveratrol inhibits AR transcriptional activity in both androgen-dependent and -independent prostate cancer cells. Additionally, resveratrol stimulates PTEN expression through AR inhibition. In contrast, resveratrol directly binds epidermal growth factor receptor (EGFR) rapidly inhibiting EGFR phosphorylation, resulting in decreased AKT phosphorylation, in an AR-independent manner. Thus, resveratrol may act as potential adjunctive treatment for late-stage hormone refractory prostate cancer. More importantly, for the first time, our study demonstrates the mechanism by which AR regulates PTEN expression at the transcription level, indicating the direct link between a nuclear receptor and the PI3K/AKT pathway. Oxford University Press 2010-11-15 2010-08-20 /pmc/articles/PMC2957324/ /pubmed/20729295 http://dx.doi.org/10.1093/hmg/ddq354 Text en © The Author 2010. Published by Oxford University Press http://creativecommons.org/licenses/by-nc/2.5/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Wang, Yu Romigh, Todd He, Xin Orloff, Mohammed S. Silverman, Robert H. Heston, Warren D. Eng, Charis Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines |
title | Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines |
title_full | Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines |
title_fullStr | Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines |
title_full_unstemmed | Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines |
title_short | Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines |
title_sort | resveratrol regulates the pten/akt pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957324/ https://www.ncbi.nlm.nih.gov/pubmed/20729295 http://dx.doi.org/10.1093/hmg/ddq354 |
work_keys_str_mv | AT wangyu resveratrolregulatestheptenaktpathwaythroughandrogenreceptordependentandindependentmechanismsinprostatecancercelllines AT romightodd resveratrolregulatestheptenaktpathwaythroughandrogenreceptordependentandindependentmechanismsinprostatecancercelllines AT hexin resveratrolregulatestheptenaktpathwaythroughandrogenreceptordependentandindependentmechanismsinprostatecancercelllines AT orloffmohammeds resveratrolregulatestheptenaktpathwaythroughandrogenreceptordependentandindependentmechanismsinprostatecancercelllines AT silvermanroberth resveratrolregulatestheptenaktpathwaythroughandrogenreceptordependentandindependentmechanismsinprostatecancercelllines AT hestonwarrend resveratrolregulatestheptenaktpathwaythroughandrogenreceptordependentandindependentmechanismsinprostatecancercelllines AT engcharis resveratrolregulatestheptenaktpathwaythroughandrogenreceptordependentandindependentmechanismsinprostatecancercelllines |