Cargando…
Neutralization of Interleukin-16 Protects Nonobese Diabetic Mice From Autoimmune Type 1 Diabetes by a CCL4-Dependent Mechanism
OBJECTIVE: The progressive infiltration of pancreatic islets by lymphocytes is mandatory for development of autoimmune type 1 diabetes. This inflammatory process is mediated by several mediators that are potential therapeutic targets to arrest development of type 1 diabetes. In this study, we invest...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2963545/ https://www.ncbi.nlm.nih.gov/pubmed/20693344 http://dx.doi.org/10.2337/db09-0131 |
Sumario: | OBJECTIVE: The progressive infiltration of pancreatic islets by lymphocytes is mandatory for development of autoimmune type 1 diabetes. This inflammatory process is mediated by several mediators that are potential therapeutic targets to arrest development of type 1 diabetes. In this study, we investigate the role of one of these mediators, interleukin-16 (IL-16), in the pathogenesis of type 1 diabetes in NOD mice. RESEARCH DESIGN AND METHODS: At different stages of progression of type 1 diabetes, we characterized IL-16 in islets using GEArray technology and immunoblot analysis and also quantitated IL-16 activity in cell migration assays. IL-16 expression was localized in islets by immunofluorescence and confocal imaging. In vivo neutralization studies were performed to assess the role of IL-16 in the pathogenesis of type 1 diabetes. RESULTS: The increased expression of IL-16 in islets correlated with the development of invasive insulitis. IL-16 immunoreactivity was found in islet infiltrating T-cells, B-cells, NK-cells, and dendritic cells, and within an insulitic lesion, IL-16 was derived from infiltrating cells. CD4(+) and CD8(+) T-cells as well as B220(+) B-cells were identified as sources of secreted IL-16. Blockade of IL-16 in vivo protected against type 1 diabetes by interfering with recruitment of CD4(+) T-cells to the pancreas, and this protection required the activity of the chemokine CCL4. CONCLUSIONS: IL-16 production by leukocytes in islets augments the severity of insulitis during the onset of type 1 diabetes. IL-16 and CCL4 appear to function as counterregulatory proteins during disease development. Neutralization of IL-16 may represent a novel therapy for the prevention of type 1 diabetes. |
---|