Cargando…
A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data
We describe a statistical method for the characterization of genomic aberrations in single nucleotide polymorphism microarray data acquired from cancer genomes. Our approach allows us to model the joint effect of polyploidy, normal DNA contamination and intra-tumour heterogeneity within a single uni...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965384/ https://www.ncbi.nlm.nih.gov/pubmed/20858232 http://dx.doi.org/10.1186/gb-2010-11-9-r92 |
_version_ | 1782189510366330880 |
---|---|
author | Yau, Christopher Mouradov, Dmitri Jorissen, Robert N Colella, Stefano Mirza, Ghazala Steers, Graham Harris, Adrian Ragoussis, Jiannis Sieber, Oliver Holmes, Christopher C |
author_facet | Yau, Christopher Mouradov, Dmitri Jorissen, Robert N Colella, Stefano Mirza, Ghazala Steers, Graham Harris, Adrian Ragoussis, Jiannis Sieber, Oliver Holmes, Christopher C |
author_sort | Yau, Christopher |
collection | PubMed |
description | We describe a statistical method for the characterization of genomic aberrations in single nucleotide polymorphism microarray data acquired from cancer genomes. Our approach allows us to model the joint effect of polyploidy, normal DNA contamination and intra-tumour heterogeneity within a single unified Bayesian framework. We demonstrate the efficacy of our method on numerous datasets including laboratory generated mixtures of normal-cancer cell lines and real primary tumours. |
format | Text |
id | pubmed-2965384 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29653842010-10-28 A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data Yau, Christopher Mouradov, Dmitri Jorissen, Robert N Colella, Stefano Mirza, Ghazala Steers, Graham Harris, Adrian Ragoussis, Jiannis Sieber, Oliver Holmes, Christopher C Genome Biol Method We describe a statistical method for the characterization of genomic aberrations in single nucleotide polymorphism microarray data acquired from cancer genomes. Our approach allows us to model the joint effect of polyploidy, normal DNA contamination and intra-tumour heterogeneity within a single unified Bayesian framework. We demonstrate the efficacy of our method on numerous datasets including laboratory generated mixtures of normal-cancer cell lines and real primary tumours. BioMed Central 2010 2010-09-21 /pmc/articles/PMC2965384/ /pubmed/20858232 http://dx.doi.org/10.1186/gb-2010-11-9-r92 Text en Copyright ©2010 Yau et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Method Yau, Christopher Mouradov, Dmitri Jorissen, Robert N Colella, Stefano Mirza, Ghazala Steers, Graham Harris, Adrian Ragoussis, Jiannis Sieber, Oliver Holmes, Christopher C A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data |
title | A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data |
title_full | A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data |
title_fullStr | A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data |
title_full_unstemmed | A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data |
title_short | A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data |
title_sort | statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965384/ https://www.ncbi.nlm.nih.gov/pubmed/20858232 http://dx.doi.org/10.1186/gb-2010-11-9-r92 |
work_keys_str_mv | AT yauchristopher astatisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT mouradovdmitri astatisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT jorissenrobertn astatisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT colellastefano astatisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT mirzaghazala astatisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT steersgraham astatisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT harrisadrian astatisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT ragoussisjiannis astatisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT sieberoliver astatisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT holmeschristopherc astatisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT yauchristopher statisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT mouradovdmitri statisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT jorissenrobertn statisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT colellastefano statisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT mirzaghazala statisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT steersgraham statisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT harrisadrian statisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT ragoussisjiannis statisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT sieberoliver statisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata AT holmeschristopherc statisticalapproachfordetectinggenomicaberrationsinheterogeneoustumorsamplesfromsinglenucleotidepolymorphismgenotypingdata |