Cargando…
A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data
We describe a statistical method for the characterization of genomic aberrations in single nucleotide polymorphism microarray data acquired from cancer genomes. Our approach allows us to model the joint effect of polyploidy, normal DNA contamination and intra-tumour heterogeneity within a single uni...
Autores principales: | Yau, Christopher, Mouradov, Dmitri, Jorissen, Robert N, Colella, Stefano, Mirza, Ghazala, Steers, Graham, Harris, Adrian, Ragoussis, Jiannis, Sieber, Oliver, Holmes, Christopher C |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965384/ https://www.ncbi.nlm.nih.gov/pubmed/20858232 http://dx.doi.org/10.1186/gb-2010-11-9-r92 |
Ejemplares similares
-
QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data
por: Colella, Stefano, et al.
Publicado: (2007) -
Finding associations in a heterogeneous setting: statistical test for aberration enrichment
por: Mezlini, Aziz M., et al.
Publicado: (2021) -
Statistical Inference in Hidden Markov Models Using k-Segment Constraints
por: Titsias, Michalis K., et al.
Publicado: (2016) -
Practical genotyping by single-nucleotide primer extension
por: Breyer, Joan P, et al.
Publicado: (2020) -
Unraveling the clonal hierarchy of somatic genomic aberrations
por: Prandi, Davide, et al.
Publicado: (2014)