Cargando…
A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells
The activation of receptor tyrosine kinases, particularly ErbB2, plays an important role in the genesis of breast cancer. ErbB2 kinase activity promotes Ras-mediated stimulation of downstream protein kinase cascades, including the Ras/Raf-1/Mek/extracellular-signal regulated kinase (Erk) pathway, le...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965784/ https://www.ncbi.nlm.nih.gov/pubmed/20711231 http://dx.doi.org/10.1038/onc.2010.318 |
_version_ | 1782189542375161856 |
---|---|
author | Arias-Romero, Luis E. Villamar-Cruz, Olga Pacheco, Almudena Kosoff, Rachelle Huang, Min Muthuswamy, Senthil K. Chernoff, Jonathan |
author_facet | Arias-Romero, Luis E. Villamar-Cruz, Olga Pacheco, Almudena Kosoff, Rachelle Huang, Min Muthuswamy, Senthil K. Chernoff, Jonathan |
author_sort | Arias-Romero, Luis E. |
collection | PubMed |
description | The activation of receptor tyrosine kinases, particularly ErbB2, plays an important role in the genesis of breast cancer. ErbB2 kinase activity promotes Ras-mediated stimulation of downstream protein kinase cascades, including the Ras/Raf-1/Mek/extracellular-signal regulated kinase (Erk) pathway, leading to tumor cell growth and migration. Signaling through the Ras-Erk pathway can be influenced by p21-activated kinase-1 (Pak1), an effector of the Rho family GTPases Rac and Cdc42. In this study, we asked if ErbB2 expression correlates with Pak1 and Erk activity in human breast cancer specimens, and if Pak1 signaling is required for ErbB2 transformation in a 3D in vitro setting and in xenografts. We found a correlation between ErbB2 expression and activation of Pak in estrogen-receptor positive human breast tumor samples and observed that in 3D cultures, activation of Rac-Pak1 pathway by ErbB2 homodimers induced growth factor independent proliferation and promoted disruption of three-dimensional mammary acinar-like structures through activation of the Erk and Akt pathways. Further, we found that inhibition of Pak1 by small molecules compromised activation of Erk and Akt, resulting in reversion of the malignant phenotype and restoration of normal acinar architecture. Finally, ErbB2-amplified breast cancer cells expressing a specific Pak inhibitor showed delayed tumor formation and down-regulation of Erk and Akt signaling in vivo. These data imply that the Rac-Pak pathway is vital to ErbB2-mediated transformation and that Pak inhibitors represent plausible drug targets in breast cancers in which ErbB2 signaling is activated. |
format | Text |
id | pubmed-2965784 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
record_format | MEDLINE/PubMed |
spelling | pubmed-29657842011-04-28 A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells Arias-Romero, Luis E. Villamar-Cruz, Olga Pacheco, Almudena Kosoff, Rachelle Huang, Min Muthuswamy, Senthil K. Chernoff, Jonathan Oncogene Article The activation of receptor tyrosine kinases, particularly ErbB2, plays an important role in the genesis of breast cancer. ErbB2 kinase activity promotes Ras-mediated stimulation of downstream protein kinase cascades, including the Ras/Raf-1/Mek/extracellular-signal regulated kinase (Erk) pathway, leading to tumor cell growth and migration. Signaling through the Ras-Erk pathway can be influenced by p21-activated kinase-1 (Pak1), an effector of the Rho family GTPases Rac and Cdc42. In this study, we asked if ErbB2 expression correlates with Pak1 and Erk activity in human breast cancer specimens, and if Pak1 signaling is required for ErbB2 transformation in a 3D in vitro setting and in xenografts. We found a correlation between ErbB2 expression and activation of Pak in estrogen-receptor positive human breast tumor samples and observed that in 3D cultures, activation of Rac-Pak1 pathway by ErbB2 homodimers induced growth factor independent proliferation and promoted disruption of three-dimensional mammary acinar-like structures through activation of the Erk and Akt pathways. Further, we found that inhibition of Pak1 by small molecules compromised activation of Erk and Akt, resulting in reversion of the malignant phenotype and restoration of normal acinar architecture. Finally, ErbB2-amplified breast cancer cells expressing a specific Pak inhibitor showed delayed tumor formation and down-regulation of Erk and Akt signaling in vivo. These data imply that the Rac-Pak pathway is vital to ErbB2-mediated transformation and that Pak inhibitors represent plausible drug targets in breast cancers in which ErbB2 signaling is activated. 2010-08-16 2010-10-28 /pmc/articles/PMC2965784/ /pubmed/20711231 http://dx.doi.org/10.1038/onc.2010.318 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Arias-Romero, Luis E. Villamar-Cruz, Olga Pacheco, Almudena Kosoff, Rachelle Huang, Min Muthuswamy, Senthil K. Chernoff, Jonathan A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells |
title | A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells |
title_full | A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells |
title_fullStr | A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells |
title_full_unstemmed | A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells |
title_short | A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells |
title_sort | rac-pak signaling pathway is essential for erbb2-mediated transformation of human breast epithelial cancer cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965784/ https://www.ncbi.nlm.nih.gov/pubmed/20711231 http://dx.doi.org/10.1038/onc.2010.318 |
work_keys_str_mv | AT ariasromeroluise aracpaksignalingpathwayisessentialforerbb2mediatedtransformationofhumanbreastepithelialcancercells AT villamarcruzolga aracpaksignalingpathwayisessentialforerbb2mediatedtransformationofhumanbreastepithelialcancercells AT pachecoalmudena aracpaksignalingpathwayisessentialforerbb2mediatedtransformationofhumanbreastepithelialcancercells AT kosoffrachelle aracpaksignalingpathwayisessentialforerbb2mediatedtransformationofhumanbreastepithelialcancercells AT huangmin aracpaksignalingpathwayisessentialforerbb2mediatedtransformationofhumanbreastepithelialcancercells AT muthuswamysenthilk aracpaksignalingpathwayisessentialforerbb2mediatedtransformationofhumanbreastepithelialcancercells AT chernoffjonathan aracpaksignalingpathwayisessentialforerbb2mediatedtransformationofhumanbreastepithelialcancercells AT ariasromeroluise racpaksignalingpathwayisessentialforerbb2mediatedtransformationofhumanbreastepithelialcancercells AT villamarcruzolga racpaksignalingpathwayisessentialforerbb2mediatedtransformationofhumanbreastepithelialcancercells AT pachecoalmudena racpaksignalingpathwayisessentialforerbb2mediatedtransformationofhumanbreastepithelialcancercells AT kosoffrachelle racpaksignalingpathwayisessentialforerbb2mediatedtransformationofhumanbreastepithelialcancercells AT huangmin racpaksignalingpathwayisessentialforerbb2mediatedtransformationofhumanbreastepithelialcancercells AT muthuswamysenthilk racpaksignalingpathwayisessentialforerbb2mediatedtransformationofhumanbreastepithelialcancercells AT chernoffjonathan racpaksignalingpathwayisessentialforerbb2mediatedtransformationofhumanbreastepithelialcancercells |