Cargando…

Impaired Thymic Selection and Abnormal Antigen-Specific T Cell Responses in Foxn1(Δ/Δ) Mutant Mice

BACKGROUND: Foxn1(Δ/Δ) mutant mice have a specific defect in thymic development, characterized by a block in TEC differentiation at an intermediate progenitor stage, and blocks in thymocyte development at both the DN1 and DP cell stages, resulting in the production of abnormally functioning T cells...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Shiyun, Manley, Nancy R.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2973975/
https://www.ncbi.nlm.nih.gov/pubmed/21079757
http://dx.doi.org/10.1371/journal.pone.0015396
Descripción
Sumario:BACKGROUND: Foxn1(Δ/Δ) mutant mice have a specific defect in thymic development, characterized by a block in TEC differentiation at an intermediate progenitor stage, and blocks in thymocyte development at both the DN1 and DP cell stages, resulting in the production of abnormally functioning T cells that develop from an atypical progenitor population. In the current study, we tested the effects of these defects on thymic selection. METHODOLOGY/PRINCIPAL FINDINGS: We used Foxn1(Δ/Δ); DO11 Tg and Foxn1(Δ/Δ); OT1 Tg mice as positive selection and Foxn1(Δ/Δ); MHCII I-E mice as negative selection models. We also used an in vivo system of antigen-specific reactivity to test the function of peripheral T cells. Our data show that the capacity for positive and negative selection of both CD4 and CD8 SP thymocytes was reduced in Foxn1(Δ/Δ) mutants compared to Foxn1(+/Δ) control mice. These defects were associated with reduction of both MHC Class I and Class II expression, although the resulting peripheral T cells have a broad TCR Vβ repertoire. In this deficient thymic environment, immature CD4 and CD8 SP thymocytes emigrate from the thymus into the periphery. These T cells had an incompletely activated profile under stimulation of the TCR signal in vitro, and were either hypersensitive or hyporesponsive to antigen-specific stimulation in vivo. These cell-autonomous defects were compounded by the hypocellular peripheral environment caused by low thymic output. CONCLUSIONS/SIGNIFICANCE: These data show that a primary defect in the thymic microenvironment can cause both direct defects in selection which can in turn cause indirect effects on the periphery, exacerbating functional defects in T cells.