Cargando…
β-Hydroxy carbocation intermediates in solvolyses of di- and tetra-hydronaphthalene substrates
Solvolysis of trichloroacetate esters of 2-methoxy-1,2-dihydro-1-naphthols shows a remarkably large difference in rates between the cis and trans isomers, k(cis)/k(trans) = 1800 in aqueous acetonitrile. This mirrors the behaviour of the acid-catalysed dehydration of cis- and trans-naphthalene-1,2-di...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981814/ https://www.ncbi.nlm.nih.gov/pubmed/21085501 http://dx.doi.org/10.3762/bjoc.6.118 |
_version_ | 1782191710967693312 |
---|---|
author | Kudavalli, Jaya S More O'Ferrall, Rory A |
author_facet | Kudavalli, Jaya S More O'Ferrall, Rory A |
author_sort | Kudavalli, Jaya S |
collection | PubMed |
description | Solvolysis of trichloroacetate esters of 2-methoxy-1,2-dihydro-1-naphthols shows a remarkably large difference in rates between the cis and trans isomers, k(cis)/k(trans) = 1800 in aqueous acetonitrile. This mirrors the behaviour of the acid-catalysed dehydration of cis- and trans-naphthalene-1,2-dihydrodiols to form 2-naphthol, for which k(cis)/k(trans) = 440, but contrasts with that for solvolysis of tetrahydronaphthalene substrates, 1-chloro-2-hydroxy-1,2,3,4-tetrahydronaphthalenes, for which k(cis)/k(trans) = 0.5. Evidence is presented showing that the trans isomer of the dihydro substrates reacts unusually slowly rather than the cis isomer unusually rapidly. Comparison of rates of solvolysis of 1-chloro-1,2,3,4-tetrahydronaphthalene and the corresponding (cis) substrate with a 2-hydroxy group indicates that a β-OH slows the reaction by nearly 2000-fold, which represents a typical inductive effect characteristic also of cis-dihydrodiol substrates. The slow reaction of the trans-dihydrodiol substrate is consistent with initial formation of a β-hydroxynaphthalenium carbocation with a conformation in which a C–OH occupies an axial position β to the carbocation centre preventing stabilisation of the carbocation by C–H hyperconjugation, which would occur in the conformation initially formed from the cis isomer. It is suggested that C–H hyperconjugation is particularly pronounced for a β-hydroxynaphthalenium ion intermediate because the stability of its no-bond resonance structure reflects the presence of an aromatic naphthol structure. |
format | Text |
id | pubmed-2981814 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Beilstein-Institut |
record_format | MEDLINE/PubMed |
spelling | pubmed-29818142010-11-17 β-Hydroxy carbocation intermediates in solvolyses of di- and tetra-hydronaphthalene substrates Kudavalli, Jaya S More O'Ferrall, Rory A Beilstein J Org Chem Full Research Paper Solvolysis of trichloroacetate esters of 2-methoxy-1,2-dihydro-1-naphthols shows a remarkably large difference in rates between the cis and trans isomers, k(cis)/k(trans) = 1800 in aqueous acetonitrile. This mirrors the behaviour of the acid-catalysed dehydration of cis- and trans-naphthalene-1,2-dihydrodiols to form 2-naphthol, for which k(cis)/k(trans) = 440, but contrasts with that for solvolysis of tetrahydronaphthalene substrates, 1-chloro-2-hydroxy-1,2,3,4-tetrahydronaphthalenes, for which k(cis)/k(trans) = 0.5. Evidence is presented showing that the trans isomer of the dihydro substrates reacts unusually slowly rather than the cis isomer unusually rapidly. Comparison of rates of solvolysis of 1-chloro-1,2,3,4-tetrahydronaphthalene and the corresponding (cis) substrate with a 2-hydroxy group indicates that a β-OH slows the reaction by nearly 2000-fold, which represents a typical inductive effect characteristic also of cis-dihydrodiol substrates. The slow reaction of the trans-dihydrodiol substrate is consistent with initial formation of a β-hydroxynaphthalenium carbocation with a conformation in which a C–OH occupies an axial position β to the carbocation centre preventing stabilisation of the carbocation by C–H hyperconjugation, which would occur in the conformation initially formed from the cis isomer. It is suggested that C–H hyperconjugation is particularly pronounced for a β-hydroxynaphthalenium ion intermediate because the stability of its no-bond resonance structure reflects the presence of an aromatic naphthol structure. Beilstein-Institut 2010-11-03 /pmc/articles/PMC2981814/ /pubmed/21085501 http://dx.doi.org/10.3762/bjoc.6.118 Text en Copyright © 2010, Kudavalli and More O'Ferrall https://creativecommons.org/licenses/by/2.0https://www.beilstein-journals.org/bjoc/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (https://www.beilstein-journals.org/bjoc/terms) |
spellingShingle | Full Research Paper Kudavalli, Jaya S More O'Ferrall, Rory A β-Hydroxy carbocation intermediates in solvolyses of di- and tetra-hydronaphthalene substrates |
title | β-Hydroxy carbocation intermediates in solvolyses of di- and tetra-hydronaphthalene substrates |
title_full | β-Hydroxy carbocation intermediates in solvolyses of di- and tetra-hydronaphthalene substrates |
title_fullStr | β-Hydroxy carbocation intermediates in solvolyses of di- and tetra-hydronaphthalene substrates |
title_full_unstemmed | β-Hydroxy carbocation intermediates in solvolyses of di- and tetra-hydronaphthalene substrates |
title_short | β-Hydroxy carbocation intermediates in solvolyses of di- and tetra-hydronaphthalene substrates |
title_sort | β-hydroxy carbocation intermediates in solvolyses of di- and tetra-hydronaphthalene substrates |
topic | Full Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981814/ https://www.ncbi.nlm.nih.gov/pubmed/21085501 http://dx.doi.org/10.3762/bjoc.6.118 |
work_keys_str_mv | AT kudavallijayas bhydroxycarbocationintermediatesinsolvolysesofdiandtetrahydronaphthalenesubstrates AT moreoferrallrorya bhydroxycarbocationintermediatesinsolvolysesofdiandtetrahydronaphthalenesubstrates |