Cargando…

Differences between β-Ala and Gly-Gly in the design of amino acids-based hydrogels

Despite the continuous interest in organogels and hydrogels of low molecular weight gelators (LMWG), establishing the relationship between the molecular structure and the gelation mechanism is still a challenge. In this paper our interest focuses on the consequences of slight molecular modifications...

Descripción completa

Detalles Bibliográficos
Autores principales: Pasc, Andreea, Obounou Akong, Firmin, Cosgun, Sedat, Gérardin, Christine
Formato: Texto
Lenguaje:English
Publicado: Beilstein-Institut 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981829/
https://www.ncbi.nlm.nih.gov/pubmed/21085509
http://dx.doi.org/10.3762/bjoc.6.109
Descripción
Sumario:Despite the continuous interest in organogels and hydrogels of low molecular weight gelators (LMWG), establishing the relationship between the molecular structure and the gelation mechanism is still a challenge. In this paper our interest focuses on the consequences of slight molecular modifications on the self-assembling behaviour of β-Ala vs Gly-Gly-based hydrogelators. Previously, in our group, amino acid based amphiphiles i.e. Gly-Gly-His-EO(2)-Alk, a trimodular amphiphile (containing three domains: H-bond donor and acceptor/hydrophilic/hydrophobic domain, respectively) were reported to act as hydrogelators and that the gelation properties were related to hydrogen bonding, hydrophobic interactions and π-π stacking. Herein, β-Ala-His-EO(2)-Alk was fully characterised by FT-IR, NMR, SAXS and SEM and the gelation mechanism is discussed. It appears that the number of amide groups determines the self-assembling behaviour into 1D or 2D/3D networks as a result of intimate interactions between gelator molecules.