Cargando…

Creation of a novel peptide with enhanced nuclear localization in prostate and pancreatic cancer cell lines

BACKGROUND: For improved uptake of oligonucleotide-based therapy, the oligonucleotides often are coupled to peptides that facilitate entry into cells. To this end, novel cell-penetrating peptides (CPPs) were designed for mediating intracellular uptake of oligonucleotide-based therapeutics. The novel...

Descripción completa

Detalles Bibliográficos
Autores principales: Lewis, H Dan, Husain, Ali, Donnelly, Robert J, Barlos, Dimitrios, Riaz, Sheraz, Ginjupalli, Kalyani, Shodeinde, Adetola, Barton, Beverly E
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987774/
https://www.ncbi.nlm.nih.gov/pubmed/21029412
http://dx.doi.org/10.1186/1472-6750-10-79
_version_ 1782192150422749184
author Lewis, H Dan
Husain, Ali
Donnelly, Robert J
Barlos, Dimitrios
Riaz, Sheraz
Ginjupalli, Kalyani
Shodeinde, Adetola
Barton, Beverly E
author_facet Lewis, H Dan
Husain, Ali
Donnelly, Robert J
Barlos, Dimitrios
Riaz, Sheraz
Ginjupalli, Kalyani
Shodeinde, Adetola
Barton, Beverly E
author_sort Lewis, H Dan
collection PubMed
description BACKGROUND: For improved uptake of oligonucleotide-based therapy, the oligonucleotides often are coupled to peptides that facilitate entry into cells. To this end, novel cell-penetrating peptides (CPPs) were designed for mediating intracellular uptake of oligonucleotide-based therapeutics. The novel peptides were based on taking advantage of the nuclear localization properties of transcription factors in combination with a peptide that would bind putatively to cell surfaces. It was observed that adding a glutamate peptide to the N-terminus of the nuclear localization signal (NLS) of the Oct6 transcription factor resulted in a novel CPP with better uptake and better nuclear colocalization than any other peptide tested. RESULTS: Uptake of the novel peptide Glu-Oct6 by cancer cell lines was rapid (in less than 1 hr, more than 60% of DU-145 cells were positive for FITC), complete (by 4 hr, 99% of cells were positive for FITC), concentration-dependent, temperature-dependent, and inhibited by sodium azide (NaN(3)). Substitution of Phe, Tyr, or Asn moieties for the glutamate portion of the novel peptide resulted in abrogation of novel CPP uptake; however none of the substituted peptides inhibited uptake of the novel CPP when coincubated with cells. Live-cell imaging and analysis by imaging flow cytometry revealed that the novel CPP accumulated in nuclei. Finally, the novel CPP was coupled to a carboxyfluorescein-labeled synthetic oligonucleotide, to see if the peptide could ferry a therapeutic payload into cells. CONCLUSIONS: These studies document the creation of a novel CPP consisting of a glutamate peptide coupled to the N-terminus of the Oct6 NLS; the novel CPP exhibited nuclear colocalization as well as uptake by prostate and pancreatic cancer cell lines.
format Text
id pubmed-2987774
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-29877742010-11-19 Creation of a novel peptide with enhanced nuclear localization in prostate and pancreatic cancer cell lines Lewis, H Dan Husain, Ali Donnelly, Robert J Barlos, Dimitrios Riaz, Sheraz Ginjupalli, Kalyani Shodeinde, Adetola Barton, Beverly E BMC Biotechnol Research Article BACKGROUND: For improved uptake of oligonucleotide-based therapy, the oligonucleotides often are coupled to peptides that facilitate entry into cells. To this end, novel cell-penetrating peptides (CPPs) were designed for mediating intracellular uptake of oligonucleotide-based therapeutics. The novel peptides were based on taking advantage of the nuclear localization properties of transcription factors in combination with a peptide that would bind putatively to cell surfaces. It was observed that adding a glutamate peptide to the N-terminus of the nuclear localization signal (NLS) of the Oct6 transcription factor resulted in a novel CPP with better uptake and better nuclear colocalization than any other peptide tested. RESULTS: Uptake of the novel peptide Glu-Oct6 by cancer cell lines was rapid (in less than 1 hr, more than 60% of DU-145 cells were positive for FITC), complete (by 4 hr, 99% of cells were positive for FITC), concentration-dependent, temperature-dependent, and inhibited by sodium azide (NaN(3)). Substitution of Phe, Tyr, or Asn moieties for the glutamate portion of the novel peptide resulted in abrogation of novel CPP uptake; however none of the substituted peptides inhibited uptake of the novel CPP when coincubated with cells. Live-cell imaging and analysis by imaging flow cytometry revealed that the novel CPP accumulated in nuclei. Finally, the novel CPP was coupled to a carboxyfluorescein-labeled synthetic oligonucleotide, to see if the peptide could ferry a therapeutic payload into cells. CONCLUSIONS: These studies document the creation of a novel CPP consisting of a glutamate peptide coupled to the N-terminus of the Oct6 NLS; the novel CPP exhibited nuclear colocalization as well as uptake by prostate and pancreatic cancer cell lines. BioMed Central 2010-10-28 /pmc/articles/PMC2987774/ /pubmed/21029412 http://dx.doi.org/10.1186/1472-6750-10-79 Text en Copyright ©2010 Lewis et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Lewis, H Dan
Husain, Ali
Donnelly, Robert J
Barlos, Dimitrios
Riaz, Sheraz
Ginjupalli, Kalyani
Shodeinde, Adetola
Barton, Beverly E
Creation of a novel peptide with enhanced nuclear localization in prostate and pancreatic cancer cell lines
title Creation of a novel peptide with enhanced nuclear localization in prostate and pancreatic cancer cell lines
title_full Creation of a novel peptide with enhanced nuclear localization in prostate and pancreatic cancer cell lines
title_fullStr Creation of a novel peptide with enhanced nuclear localization in prostate and pancreatic cancer cell lines
title_full_unstemmed Creation of a novel peptide with enhanced nuclear localization in prostate and pancreatic cancer cell lines
title_short Creation of a novel peptide with enhanced nuclear localization in prostate and pancreatic cancer cell lines
title_sort creation of a novel peptide with enhanced nuclear localization in prostate and pancreatic cancer cell lines
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987774/
https://www.ncbi.nlm.nih.gov/pubmed/21029412
http://dx.doi.org/10.1186/1472-6750-10-79
work_keys_str_mv AT lewishdan creationofanovelpeptidewithenhancednuclearlocalizationinprostateandpancreaticcancercelllines
AT husainali creationofanovelpeptidewithenhancednuclearlocalizationinprostateandpancreaticcancercelllines
AT donnellyrobertj creationofanovelpeptidewithenhancednuclearlocalizationinprostateandpancreaticcancercelllines
AT barlosdimitrios creationofanovelpeptidewithenhancednuclearlocalizationinprostateandpancreaticcancercelllines
AT riazsheraz creationofanovelpeptidewithenhancednuclearlocalizationinprostateandpancreaticcancercelllines
AT ginjupallikalyani creationofanovelpeptidewithenhancednuclearlocalizationinprostateandpancreaticcancercelllines
AT shodeindeadetola creationofanovelpeptidewithenhancednuclearlocalizationinprostateandpancreaticcancercelllines
AT bartonbeverlye creationofanovelpeptidewithenhancednuclearlocalizationinprostateandpancreaticcancercelllines