Cargando…

Structural basis for cooperative RNA binding and export complex assembly by HIV Rev

HIV replication requires nuclear export of unspliced viral RNAs to translate structural proteins and package genomic RNA. Export is mediated by cooperative binding of the Rev protein to the Rev response element (RRE) RNA, forming a highly specific oligomeric ribonucleoprotein (RNP) that binds to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Daugherty, Matthew D., Liu, Bella, Frankel, Alan D.
Formato: Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988976/
https://www.ncbi.nlm.nih.gov/pubmed/20953181
http://dx.doi.org/10.1038/nsmb.1902
Descripción
Sumario:HIV replication requires nuclear export of unspliced viral RNAs to translate structural proteins and package genomic RNA. Export is mediated by cooperative binding of the Rev protein to the Rev response element (RRE) RNA, forming a highly specific oligomeric ribonucleoprotein (RNP) that binds to the Crm1 host export factor. To understand how protein oligomerization generates cooperativity and specificity for RRE binding, we solved the crystal structure of a Rev dimer at 2.5 Å resolution. The dimer arrangement organizes arginine-rich helices at the ends of a V-shaped assembly to bind adjacent RNA sites, structurally coupling dimerization and RNA recognition. A second protein–protein interface arranges higher-order Rev oligomers to act as an adapter to the host export machinery, with viral RNA bound to one face and Crm1 to another, thereby using small, interconnected modules to physically arrange the RNP for efficient export.